These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 18427091)

  • 1. Traumatic brain injury: can the consequences be stopped?
    Park E; Bell JD; Baker AJ
    CMAJ; 2008 Apr; 178(9):1163-70. PubMed ID: 18427091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats.
    Huh JW; Franklin MA; Widing AG; Raghupathi R
    Dev Neurosci; 2006; 28(4-5):466-76. PubMed ID: 16943669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biological mechanisms involved in the spread of traumatic brain damage].
    Rovegno M; Soto PA; Sáez JC; von Bernhardi R
    Med Intensiva; 2012; 36(1):37-44. PubMed ID: 21903299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury.
    Andriessen TM; Jacobs B; Vos PE
    J Cell Mol Med; 2010 Oct; 14(10):2381-92. PubMed ID: 20738443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All roads lead to disconnection?--Traumatic axonal injury revisited.
    Büki A; Povlishock JT
    Acta Neurochir (Wien); 2006 Feb; 148(2):181-93; discussion 193-4. PubMed ID: 16362181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition.
    DeRidder MN; Simon MJ; Siman R; Auberson YP; Raghupathi R; Meaney DF
    Neurobiol Dis; 2006 Apr; 22(1):165-76. PubMed ID: 16356733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haemodynamic patterns in children with posttraumatic diffuse brain swelling. A preliminary study in 6 cases with neuroradiological features consistent with diffuse axonal injury.
    Visocchi M; Chiaretti A; Genovese O; Di Rocco F
    Acta Neurochir (Wien); 2007; 149(4):347-56. PubMed ID: 17426998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traumatic Axonal Injury: Mechanisms and Translational Opportunities.
    Hill CS; Coleman MP; Menon DK
    Trends Neurosci; 2016 May; 39(5):311-324. PubMed ID: 27040729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current aspects of pathophysiology and cell dysfunction after severe head injury.
    Sahuquillo J; Poca MA; Amoros S
    Curr Pharm Des; 2001 Oct; 7(15):1475-503. PubMed ID: 11562294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traumatic brain injury: developmental differences in glutamate receptor response and the impact on treatment.
    Lea PM; Faden AI
    Ment Retard Dev Disabil Res Rev; 2001; 7(4):235-48. PubMed ID: 11754517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High extracellular potassium and its correlates after severe head injury: relationship to high intracranial pressure.
    Reinert M; Khaldi A; Zauner A; Doppenberg E; Choi S; Bullock R
    Neurosurg Focus; 2000; 8(1):e10. PubMed ID: 16924778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. True hemicranial decompression for severe pediatric cranial trauma: a short series of 4 cases and literature review.
    Mukherjee KK; Mohindra S; Gupta SK; Gupta R; Khosla VK
    Surg Neurol; 2006 Sep; 66(3):305-10; discussion 310. PubMed ID: 16935641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental models of traumatic axonal injury.
    Wang HC; Ma YB
    J Clin Neurosci; 2010 Feb; 17(2):157-62. PubMed ID: 20042337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decompressive craniectomy is indispensible in the management of severe traumatic brain injury.
    Vashu R; Sohail A
    Acta Neurochir (Wien); 2011 Oct; 153(10):2065-6. PubMed ID: 21805287
    [No Abstract]   [Full Text] [Related]  

  • 15. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice.
    Thompson SN; Gibson TR; Thompson BM; Deng Y; Hall ED
    Exp Neurol; 2006 Sep; 201(1):253-65. PubMed ID: 16814284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of calpains in traumatic brain injury.
    Liu S; Yin F; Zhang J; Qian Y
    Brain Inj; 2014; 28(2):133-7. PubMed ID: 24456052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of NR2B phosphorylation restores alterations in NMDA receptor expression and improves functional recovery following traumatic brain injury in mice.
    Schumann J; Alexandrovich GA; Biegon A; Yaka R
    J Neurotrauma; 2008 Aug; 25(8):945-57. PubMed ID: 18721106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-permeable AMPA receptors appear in cortical neurons after traumatic mechanical injury and contribute to neuronal fate.
    Spaethling JM; Klein DM; Singh P; Meaney DF
    J Neurotrauma; 2008 Oct; 25(10):1207-16. PubMed ID: 18986222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low intracranial compliance increases the impact of intracranial volume insults to the traumatized brain: a microdialysis study in a traumatic brain injury rodent model.
    Salci K; Nilsson P; Goiny M; Contant C; Piper I; Enblad P
    Neurosurgery; 2006 Aug; 59(2):367-73; discussion 367-73. PubMed ID: 16883177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathophysiology of traumatic brain injury.
    Greve MW; Zink BJ
    Mt Sinai J Med; 2009 Apr; 76(2):97-104. PubMed ID: 19306379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.