These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18427585)

  • 41. Soliton behaviour in a bistable reaction diffusion model.
    Varea C; Hernández D; Barrio RA
    J Math Biol; 2007 Jun; 54(6):797-813. PubMed ID: 17530255
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting case of differential advection.
    Siebert J; Alonso S; Bär M; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052909. PubMed ID: 25353863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of Coupled Reaction-Diffusion Equations for RNA Interactions.
    Hohn ME; Li B; Yang W
    J Math Anal Appl; 2015 May; 425(1):212-233. PubMed ID: 25601722
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stationary localized structures and the effect of the delayed feedback in the Brusselator model.
    Kostet B; Tlidi M; Tabbert F; Frohoff-Hülsmann T; Gurevich SV; Averlant E; Rojas R; Sonnino G; Panajotov K
    Philos Trans A Math Phys Eng Sci; 2018 Nov; 376(2135):. PubMed ID: 30420547
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations.
    Halloy J; Sonnino G; Coullet P
    Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identifying network topologies that can generate turing pattern.
    Zheng MM; Shao B; Ouyang Q
    J Theor Biol; 2016 Nov; 408():88-96. PubMed ID: 27519949
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diffusion-driven destabilization of spatially homogeneous limit cycles in reaction-diffusion systems.
    Kuwamura M; Izuhara H
    Chaos; 2017 Mar; 27(3):033112. PubMed ID: 28364773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Turing instabilities in general systems.
    Satnoianu RA; Menzinger M; Maini PK
    J Math Biol; 2000 Dec; 41(6):493-512. PubMed ID: 11196582
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of erythropoietin-induced STAT serine phosphorylation by distinct mitogen-activated protein kinases.
    Haq R; Halupa A; Beattie BK; Mason JM; Zanke BW; Barber DL
    J Biol Chem; 2002 May; 277(19):17359-66. PubMed ID: 11875080
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Competitively coupled maps and spatial pattern formation.
    Killingback T; Loftus G; Sundaram B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022902. PubMed ID: 23496586
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pattern formation from spatially heterogeneous reaction-diffusion systems.
    Van Gorder RA
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20210001. PubMed ID: 34743604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Turing patterns beyond hexagons and stripes.
    Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    Chaos; 2006 Sep; 16(3):037114. PubMed ID: 17014248
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemical pattern formation induced by a shear flow in a two-layer model.
    Vasquez DA; Meyer J; Suedhoff H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036109. PubMed ID: 18851107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial movement with distributed memory.
    Shi Q; Shi J; Wang H
    J Math Biol; 2021 Mar; 82(4):33. PubMed ID: 33709247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Turing Instability and Colony Formation in Spatially Extended Rosenzweig-MacArthur Predator-Prey Models with Allochthonous Resources.
    Zhou Z; Van Gorder RA
    Bull Math Biol; 2019 Dec; 81(12):5009-5053. PubMed ID: 31595381
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduction of nonlinear dynamic systems with an application to signal transduction pathways.
    Petrov V; Nikolova E; Wolkenhauer O
    IET Syst Biol; 2007 Jan; 1(1):2-9. PubMed ID: 17370424
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems.
    Lo WC; Chen L; Wang M; Nie Q
    J Comput Phys; 2012 Jun; 231(15):5062-5077. PubMed ID: 22773849
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatial instabilities in reaction random walks with direction-independent kinetics.
    Horsthemke W
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2651-63. PubMed ID: 11970066
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Turing pattern dynamics in an activator-inhibitor system with superdiffusion.
    Zhang L; Tian C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062915. PubMed ID: 25615172
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stochastic Turing patterns: analysis of compartment-based approaches.
    Cao Y; Erban R
    Bull Math Biol; 2014 Dec; 76(12):3051-69. PubMed ID: 25421150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.