BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18427738)

  • 1. Sequential production of amylolytic and lipolytic enzymes by bacterium strain isolated from petroleum contaminated soil.
    Carvalho NB; de Souza RL; de Castro HF; Zanin GM; Lima AS; Soares CM
    Appl Biochem Biotechnol; 2008 Jul; 150(1):25-32. PubMed ID: 18427738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Survival of microorganisms in soil contaminated with diesel fuel].
    Alton LV
    Gig Sanit; 1989 Jan; (1):75-7. PubMed ID: 2722002
    [No Abstract]   [Full Text] [Related]  

  • 3. Statistical enhancement of lipase extracellular production by Bacillus stratosphericus PSP8 in a batch submerged fermentation process.
    Ismail AR; El-Henawy SB; Younis SA; Betiha MA; El-Gendy NS; Azab MS; Sedky NM
    J Appl Microbiol; 2018 Oct; 125(4):1076-1093. PubMed ID: 29907994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold active microbial lipases: some hot issues and recent developments.
    Joseph B; Ramteke PW; Thomas G
    Biotechnol Adv; 2008; 26(5):457-70. PubMed ID: 18571355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Isolation of a lipase-producing Pseudomonas strain and optimization of its fermentation conditions].
    Gao X; Zhang K; Cao S
    Wei Sheng Wu Xue Bao; 1998 Aug; 38(4):313-7. PubMed ID: 12549422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of evolutionary operation (EVOP) factorial design technique to develop a bioprocess using grease waste as a substrate for lipase production.
    Kumar S; Katiyar N; Ingle P; Negi S
    Bioresour Technol; 2011 Apr; 102(7):4909-12. PubMed ID: 21292479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer.
    Dizge N; Aydiner C; Imer DY; Bayramoglu M; Tanriseven A; Keskinler B
    Bioresour Technol; 2009 Mar; 100(6):1983-91. PubMed ID: 19028094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.
    Joo HS; Ndegwa PM; Shoda M; Phae CG
    Environ Pollut; 2008 Dec; 156(3):891-6. PubMed ID: 18620787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Conditions of exolipase biosynthesis by the fungus Oospora fragrans].
    Ruban EL; Ksandopulo GB; Murzina LP
    Prikl Biokhim Mikrobiol; 1978; 14(6):849-57. PubMed ID: 34835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of aeration and agitation regimes on lipase production by newly isolated Rhodotorula mucilaginosa-MTCC 8737 in stirred tank reactor using molasses as sole production medium.
    Potumarthi R; Subhakar C; Vanajakshi J; Jetty A
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):700-10. PubMed ID: 18574564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The realm of microbial lipases in biotechnology.
    Pandey A; Benjamin S; Soccol CR; Nigam P; Krieger N; Soccol VT
    Biotechnol Appl Biochem; 1999 Apr; 29(2):119-31. PubMed ID: 10075908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.
    Amoozegar MA; Salehghamari E; Khajeh K; Kabiri M; Naddaf S
    J Basic Microbiol; 2008 Jun; 48(3):160-7. PubMed ID: 18506896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the biodegradation of naphthalene by a microorganism isolated from petroleum contaminated soil.
    Martin A; Sivagurunathan M
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):175-8. PubMed ID: 15296156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of lipase-producing microorganisms through submerged fermentation.
    Colla LM; Primaz AL; Benedetti S; Loss RA; de Lima M; Reinehr CO; Bertolin TE; Costa JA
    Z Naturforsch C J Biosci; 2010; 65(7-8):483-8. PubMed ID: 20737918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods evaluating vanadium tolerance in bacteria isolated from crude oil contaminated land.
    Bell JM; Philp JC; Kuyukina MS; Ivshina IB; Dunbar SA; Cunningham CJ; Anderson P
    J Microbiol Methods; 2004 Jul; 58(1):87-100. PubMed ID: 15177907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular lipolytic enzyme activity of a newly isolated Debaryomyces hansenii.
    Takaç S; Sengel BS
    Prep Biochem Biotechnol; 2010; 40(1):28-37. PubMed ID: 20024792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytodegradation potential of Erythrina crista-galli L., Fabaceae, in petroleum-contaminated soil.
    de Farias V; Maranho LT; de Vasconcelos EC; da Silva Carvalho Filho MA; Lacerda LG; Azevedo JA; Pandey A; Soccol CR
    Appl Biochem Biotechnol; 2009 Apr; 157(1):10-22. PubMed ID: 19277490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons in acidic conditions.
    Sood N; Lal B
    J Environ Manage; 2009 Apr; 90(5):1728-36. PubMed ID: 19111380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation.
    Płaza GA; Jangid K; Lukasik K; Nałecz-Jawecki G; Berry CJ; Brigmon RL
    Bull Environ Contam Toxicol; 2008 Oct; 81(4):329-33. PubMed ID: 18663400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses.
    Colla LM; Rizzardi J; Pinto MH; Reinehr CO; Bertolin TE; Costa JA
    Bioresour Technol; 2010 Nov; 101(21):8308-14. PubMed ID: 20580228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.