BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18427793)

  • 1. Soleus H-reflex excitability during pedaling post-stroke.
    Schindler-Ivens S; Brown DA; Lewis GN; Nielsen JB; Ondishko KL; Wieser J
    Exp Brain Res; 2008 Jul; 188(3):465-74. PubMed ID: 18427793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pedaling alters the excitability and modulation of vastus medialis H-reflexes after stroke.
    Fuchs DP; Sanghvi N; Wieser J; Schindler-Ivens S
    Clin Neurophysiol; 2011 Oct; 122(10):2036-43. PubMed ID: 21507713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direction-dependent phasing of locomotor muscle activity is altered post-stroke.
    Schindler-Ivens S; Brown DA; Brooke JD
    J Neurophysiol; 2004 Oct; 92(4):2207-16. PubMed ID: 15175363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired interlimb coordination is related to asymmetries during pedaling after stroke.
    Cleland BT; Gelting T; Arand B; Struhar J; Schindler-Ivens S
    Clin Neurophysiol; 2019 Sep; 130(9):1474-1487. PubMed ID: 31288158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of transmission in the corticospinal and group Ia afferent pathways to soleus motoneurons during bicycling.
    Pyndt HS; Nielsen JB
    J Neurophysiol; 2003 Jan; 89(1):304-14. PubMed ID: 12522181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired muscle phasing systematically adapts to varied relative angular relationships during locomotion in people poststroke.
    Alibiglou L; Brown DA
    J Neurophysiol; 2011 Apr; 105(4):1660-70. PubMed ID: 21307323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative temporal leading or following position of the contralateral limb generates different aftereffects in muscle phasing following adaptation training post-stroke.
    Alibiglou L; Brown DA
    Exp Brain Res; 2011 May; 211(1):37-50. PubMed ID: 21523333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. After-effects of pedaling exercise on spinal excitability and spinal reciprocal inhibition in patients with chronic stroke.
    Tanuma A; Fujiwara T; Yamaguchi T; Ro T; Arano H; Uehara S; Honaga K; Mukaino M; Kimura A; Liu M
    Int J Neurosci; 2017 Jan; 127(1):73-79. PubMed ID: 26785780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretch of quadriceps inhibits the soleus H reflex during locomotion in decerebrate cats.
    Misiaszek JE; Pearson KG
    J Neurophysiol; 1997 Dec; 78(6):2975-84. PubMed ID: 9405517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual feedback during pedaling allows individuals poststroke to alter inappropriately prolonged paretic vastus medialis activity.
    Mullens CH; Brown DA
    J Neurophysiol; 2018 Jun; 119(6):2334-2346. PubMed ID: 29537910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity.
    Morita H; Crone C; Christenhuis D; Petersen NT; Nielsen JB
    Brain; 2001 Apr; 124(Pt 4):826-37. PubMed ID: 11287381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke.
    Mazzaro N; Nielsen JF; Grey MJ; Sinkjaer T
    J Stroke Cerebrovasc Dis; 2007; 16(4):135-44. PubMed ID: 17689409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Load- and cadence-dependent modulation of somatosensory evoked potentials and Soleus H-reflexes during active leg pedaling in humans.
    Sakamoto M; Nakajima T; Wasaka T; Kida T; Nakata H; Endoh T; Nishihira Y; Komiyama T
    Brain Res; 2004 Dec; 1029(2):272-85. PubMed ID: 15542082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does unilateral pedaling activate a rhythmic locomotor pattern in the nonpedaling leg in post-stroke hemiparesis?
    Kautz SA; Patten C; Neptune RR
    J Neurophysiol; 2006 May; 95(5):3154-63. PubMed ID: 16452259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans.
    Lavoie BA; Devanne H; Capaday C
    J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretch and H reflexes in triceps surae are similar during tonic and rhythmic contractions in high decerebrate cats.
    Misiaszek JE; de Serres SJ; Stein RB; Jiang W; Pearson KG
    J Neurophysiol; 2000 Apr; 83(4):1941-50. PubMed ID: 10758105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of altered stretch reflex coordination to arm impairments following stroke.
    Trumbower RD; Ravichandran VJ; Krutky MA; Perreault EJ
    J Neurophysiol; 2010 Dec; 104(6):3612-24. PubMed ID: 20962072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotor training improves premotoneuronal control after chronic spinal cord injury.
    Knikou M; Mummidisetty CK
    J Neurophysiol; 2014 Jun; 111(11):2264-75. PubMed ID: 24598526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal volitional hip torque phasing and hip impairments in gait post stroke.
    Hyngstrom A; Onushko T; Chua M; Schmit BD
    J Neurophysiol; 2010 Mar; 103(3):1557-68. PubMed ID: 20089823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.