BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18428031)

  • 1. Effects of hyperkinetic, a beta subunit of Shaker voltage-dependent K+ channels, on the oxidation state of presynaptic nerve terminals.
    Ueda A; Wu CF
    J Neurogenet; 2008; 22(2):1-13. PubMed ID: 18428031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of social isolation on neuromuscular excitability and aggressive behaviors in Drosophila: altered responses by Hk and gsts1, two mutations implicated in redox regulation.
    Ueda A; Wu CF
    J Neurogenet; 2009; 23(4):378-94. PubMed ID: 19863269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons.
    Yao WD; Wu CF
    J Neurophysiol; 1999 May; 81(5):2472-84. PubMed ID: 10322082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo functional role of the Drosophila hyperkinetic beta subunit in gating and inactivation of Shaker K+ channels.
    Wang JW; Wu CF
    Biophys J; 1996 Dec; 71(6):3167-76. PubMed ID: 8968587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel leg-shaking Drosophila mutant defective in a voltage-gated K(+)current and hypersensitive to reactive oxygen species.
    Wang JW; Humphreys JM; Phillips JP; Hilliker AJ; Wu CF
    J Neurosci; 2000 Aug; 20(16):5958-64. PubMed ID: 10934243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Drosophila cacts2 mutation reduces presynaptic Ca2+ entry and defines an important element in Cav2.1 channel inactivation.
    Macleod GT; Chen L; Karunanithi S; Peloquin JB; Atwood HL; McRory JE; Zamponi GW; Charlton MP
    Eur J Neurosci; 2006 Jun; 23(12):3230-44. PubMed ID: 16820014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the frequency response of Shaker potassium channels by the quiver peptide suggesting a novel extracellular interaction mechanism.
    Wang JW; Wu CF
    J Neurogenet; 2010 Jul; 24(2):67-74. PubMed ID: 20429677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic recordings from Drosophila: correlation of macroscopic and single-channel K+ currents.
    Martínez-Padrón M; Ferrús A
    J Neurosci; 1997 May; 17(10):3412-24. PubMed ID: 9133367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of repolarization of presynaptic motor terminals in Drosophila larvae using potassium-channel-blocking drugs and mutations.
    Gho M; Ganetzky B
    J Exp Biol; 1992 Sep; 170():93-111. PubMed ID: 1328458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct roles of Drosophila cacophony and Dmca1D Ca(2+) channels in synaptic homeostasis: genetic interactions with slowpoke Ca(2+) -activated BK channels in presynaptic excitability and postsynaptic response.
    Lee J; Ueda A; Wu CF
    Dev Neurobiol; 2014 Jan; 74(1):1-15. PubMed ID: 23959639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Eag by Ca
    Bronk P; Kuklin EA; Gorur-Shandilya S; Liu C; Wiggin TD; Reed ML; Marder E; Griffith LC
    J Neurophysiol; 2018 May; 119(5):1665-1680. PubMed ID: 29364071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor.
    Fogle KJ; Baik LS; Houl JH; Tran TT; Roberts L; Dahm NA; Cao Y; Zhou M; Holmes TC
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):2245-50. PubMed ID: 25646452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species regulate activity-dependent neuronal plasticity in
    Oswald MC; Brooks PS; Zwart MF; Mukherjee A; West RJ; Giachello CN; Morarach K; Baines RA; Sweeney ST; Landgraf M
    Elife; 2018 Dec; 7():. PubMed ID: 30540251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations.
    Ueda A; Wu CF
    J Neurosci; 2006 Jun; 26(23):6238-48. PubMed ID: 16763031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A potassium channel beta subunit related to the aldo-keto reductase superfamily is encoded by the Drosophila hyperkinetic locus.
    Chouinard SW; Wilson GF; Schlimgen AK; Ganetzky B
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6763-7. PubMed ID: 7542775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction.
    Giniatullin AR; Grishin SN; Sharifullina ER; Petrov AM; Zefirov AL; Giniatullin RA
    J Physiol; 2005 May; 565(Pt 1):229-42. PubMed ID: 15774519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual action of hydrogen peroxide on synaptic transmission at the frog neuromuscular junction.
    Giniatullin AR; Giniatullin RA
    J Physiol; 2003 Oct; 552(Pt 1):283-93. PubMed ID: 12897166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and molecular organization of the adult neuromuscular junction of Drosophila.
    Rivlin PK; St Clair RM; Vilinsky I; Deitcher DL
    J Comp Neurol; 2004 Jan; 468(4):596-613. PubMed ID: 14689489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling Drosophila melanogaster Cryptochrome Light Activation and Oxidation of the Kvβ Subunit Hyperkinetic NADPH Cofactor.
    Hong G; Pachter R; Ritz T
    J Phys Chem B; 2018 Jun; 122(25):6503-6510. PubMed ID: 29847128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the ecdysoneless mutant on synaptic efficacy and structure at the neuromuscular junction in Drosophila larvae during normal and prolonged development.
    Li H; Cooper RL
    Neuroscience; 2001; 106(1):193-200. PubMed ID: 11564429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.