These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 18428279)

  • 1. Mitotic chromosome preparations from mouse cells for karyotyping.
    Akeson EC; Davisson MT
    Curr Protoc Hum Genet; 2001 May; Chapter 4():Unit4.10. PubMed ID: 18428279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytogenetic analysis by chromosome painting.
    Carter NP
    Cytometry; 1994 Mar; 18(1):2-10. PubMed ID: 8082483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural unbalanced chromosome rearrangements resolved by comparative genomic hybridization.
    Daniely M; Barkai G; Goldman B; Aviram-Goldring A
    Cytogenet Cell Genet; 1999; 86(1):51-5. PubMed ID: 10516433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping.
    Veldman T; Vignon C; Schröck E; Rowley JD; Ried T
    Nat Genet; 1997 Apr; 15(4):406-10. PubMed ID: 9090389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the quality of donor cells: karyotyping methods.
    Bonnet-Garnier A; Veillard AC; Bed'Hom B; Hayes H; Britton-Davidian J
    Methods Mol Biol; 2015; 1222():83-99. PubMed ID: 25287340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybridization-based karyotyping of mouse chromosomes: hybridization-bands.
    Liechty MC; Carpio CM; Aytay S; Clase AC; Puschus KL; Sims KR; Davis LM; Hozier JC
    Cytogenet Cell Genet; 1999; 86(1):34-8. PubMed ID: 10516429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral karyotyping analysis of head and neck squamous cell carcinoma.
    Singh B; Gogineni S; Goberdhan A; Sacks P; Shaha A; Shah J; Rao P
    Laryngoscope; 2001 Sep; 111(9):1545-50. PubMed ID: 11568603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex-fluorescence in situ hybridization for chromosome karyotyping.
    Geigl JB; Uhrig S; Speicher MR
    Nat Protoc; 2006; 1(3):1172-84. PubMed ID: 17406400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytogenetic analysis of cardiovascular disease: karyotyping.
    Jarmuz M; Shaffer LG
    Methods Mol Med; 2006; 128():1-9. PubMed ID: 17071985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prenatal detection of a de novo Yqh-acrocentric translocation.
    Ng LK; Kwok YK; Tang LY; Ng PP; Ghosh A; Lau ET; Tang MH
    Clin Biochem; 2006 Mar; 39(3):219-23. PubMed ID: 16515778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Japanese flounder karyotype by chromosome bandings and fluorescence in situ hybridization with DNA markers.
    Fujiwara A; Fujiwara M; Nishida-Umehara C; Abe S; Masaoka T
    Genetica; 2007 Nov; 131(3):267-74. PubMed ID: 17273899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicolour spectral karyotyping of mouse chromosomes.
    Liyanage M; Coleman A; du Manoir S; Veldman T; McCormack S; Dickson RB; Barlow C; Wynshaw-Boris A; Janz S; Wienberg J; Ferguson-Smith MA; Schröck E; Ried T
    Nat Genet; 1996 Nov; 14(3):312-5. PubMed ID: 8896561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization.
    Boyle AL; Ballard SG; Ward DC
    Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7757-61. PubMed ID: 2170987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of an in situ karyotyping technique for mesenchymal stromal cells: a validation and comparison study with classical G-banding.
    Hwang SM; See CJ; Choi J; Kim SY; Choi Q; Kim JA; Kwon J; Park SN; Im K; Oh IH; Lee DS
    Exp Mol Med; 2013 Dec; 45(12):e68. PubMed ID: 24357832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and fate of a marker chromosome in methotrexate-resistant V79,B7 cells by flow karyotyping and sorting, metaphase analysis and in situ hybridization.
    Nüsse M; Viaggi S; Bonatti S
    Anal Cell Pathol; 1992 Sep; 4(5):345-58. PubMed ID: 1445793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of chromosome preparation methods for the different developmental stages of the half-smooth tongue sole, Cynoglossus semilaevis.
    Shao CW; Wu PF; Wang XL; Tian YS; Chen SL
    Micron; 2010 Jan; 41(1):47-50. PubMed ID: 19781952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Karyotyping human chromosomes by combinatorial multi-fluor FISH.
    Speicher MR; Gwyn Ballard S; Ward DC
    Nat Genet; 1996 Apr; 12(4):368-75. PubMed ID: 8630489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of comparative genomic hybridization.
    du Manoir S; Schröck E; Bentz M; Speicher MR; Joos S; Ried T; Lichter P; Cremer T
    Cytometry; 1995 Jan; 19(1):27-41. PubMed ID: 7705182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Karyotype studies of patients with a myelodysplastic syndrome].
    Salamanchuk ZIa; Masliak ZV; Lozyns'ka MR; Vyhovs'ka IaI; Lohins'kyĭ VIe; Male P
    Tsitol Genet; 1998; 32(1):43-8. PubMed ID: 9695251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of chromosomal aberrations in diffuse large B-cell lymphoma (DLBL) by G-banding and spectral karyotyping (SKY).
    Adam P; Steinlein C; Schmid M; Haralambieva E; Stocklein H; Leich E; Rosenwald A; Muller-Hermelink HK; Ott G
    Cytogenet Genome Res; 2006; 114(3-4):274-8. PubMed ID: 16954666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.