BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18428410)

  • 1. Detection of hypo-N-glycosylation using mass spectrometry of transferrin.
    O'Brien JF; Lacey JM; Bergen HR
    Curr Protoc Hum Genet; 2007 Jul; Chapter 17():Unit 17.4. PubMed ID: 18428410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory diagnosis of congenital disorders of glycosylation type I by analysis of transferrin glycoforms.
    Babovic-Vuksanovic D; O'Brien JF
    Mol Diagn Ther; 2007; 11(5):303-11. PubMed ID: 17963418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosis of congenital disorders of glycosylation type-I using protein chip technology.
    Mills K; Mills P; Jackson M; Worthington V; Beesley C; Mann A; Clayton P; Grunewald S; Keir G; Young L; Langridge J; Mian N; Winchester B
    Proteomics; 2006 Apr; 6(7):2295-304. PubMed ID: 16552784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening using serum percentage of carbohydrate-deficient transferrin for congenital disorders of glycosylation in children with suspected metabolic disease.
    Pérez-Cerdá C; Quelhas D; Vega AI; Ecay J; Vilarinho L; Ugarte M
    Clin Chem; 2008 Jan; 54(1):93-100. PubMed ID: 18024528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass spectrometry for congenital disorders of glycosylation, CDG.
    Wada Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Jun; 838(1):3-8. PubMed ID: 16517226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Congenital disorders of glycosylation].
    Durand G; Dupré T; Vuillaumier-Barrot S; Seta N
    Ann Pharm Fr; 2003; 61(5):330-9. PubMed ID: 13130291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of glycosylation in CDG-Ia fibroblasts by fluorophore-assisted carbohydrate electrophoresis: implications for extracellular glucose and intracellular mannose 6-phosphate.
    Gao N; Shang J; Lehrman MA
    J Biol Chem; 2005 May; 280(18):17901-9. PubMed ID: 15708848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new strategy implementing mass spectrometry in the diagnosis of congenital disorders of N-glycosylation (CDG).
    Casetta B; Malvagia S; Funghini S; Martinelli D; Dionisi-Vici C; Barone R; Fiumara A; Donati MA; Guerrini R; la Marca G
    Clin Chem Lab Med; 2020 Aug; 59(1):165-171. PubMed ID: 32776892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personal experience with the application of carbohydrate-deficient transferrin (CDT) assays to the detection of congenital disorders of glycosylation.
    Colomé C; Ferrer I; Artuch R; Vilaseca MA; Pineda M; Briones P
    Clin Chem Lab Med; 2000 Oct; 38(10):965-9. PubMed ID: 11140630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometry in the characterization of human genetic N-glycosylation defects.
    Barone R; Sturiale L; Garozzo D
    Mass Spectrom Rev; 2009; 28(3):517-42. PubMed ID: 18844296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometric analysis of human transferrin in different body fluids.
    Kleinert P; Kuster T; Durka S; Ballhausen D; Bosshard NU; Steinmann B; Hänseler E; Jaeken J; Heizmann CW; Troxler H
    Clin Chem Lab Med; 2003 Dec; 41(12):1580-8. PubMed ID: 14708882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik.
    Grubenmann CE; Frank CG; Hülsmeier AJ; Schollen E; Matthijs G; Mayatepek E; Berger EG; Aebi M; Hennet T
    Hum Mol Genet; 2004 Mar; 13(5):535-42. PubMed ID: 14709599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometry in the detection and diagnosis of congenital disorders of glycosylation.
    Wada Y
    Eur J Mass Spectrom (Chichester); 2007; 13(1):101-3. PubMed ID: 17878547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymptomatic phosphomannose isomerase deficiency (MPI-CDG) initially mistaken for excessive alcohol consumption.
    Helander A; Jaeken J; Matthijs G; Eggertsen G
    Clin Chim Acta; 2014 Apr; 431():15-8. PubMed ID: 24508628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate-deficient transferrin (CDT) as a biochemical tool for the screening of congenital disorders of glycosylation (CDGs).
    Biffi S; Tamaro G; Bortot B; Zamberlan S; Severini GM; Carrozzi M
    Clin Biochem; 2007 Dec; 40(18):1431-4. PubMed ID: 17920054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation.
    van Scherpenzeel M; Steenbergen G; Morava E; Wevers RA; Lefeber DJ
    Transl Res; 2015 Dec; 166(6):639-649.e1. PubMed ID: 26307094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular diagnosis of congenital disorders of glycosylation].
    Vuillaumier-Barrot S
    Ann Biol Clin (Paris); 2005; 63(2):135-43. PubMed ID: 15771971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid determination of transferrin isoforms by immunoaffinity liquid chromatography and electrospray mass spectrometry.
    Lacey JM; Bergen HR; Magera MJ; Naylor S; O'Brien JF
    Clin Chem; 2001 Mar; 47(3):513-8. PubMed ID: 11238305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Congenital disorders of glycosylation: a review.
    Grunewald S; Matthijs G; Jaeken J
    Pediatr Res; 2002 Nov; 52(5):618-24. PubMed ID: 12409504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphomannomutase activity in congenital disorders of glycosylation type Ia determined by direct analysis of the interconversion of mannose-1-phosphate to mannose-6-phosphate by high-pH anion-exchange chromatography with pulsed amperometric detection.
    Orvisky E; Stubblefield B; Long RT; Martin BM; Sidransky E; Krasnewich D
    Anal Biochem; 2003 Jun; 317(1):12-8. PubMed ID: 12729595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.