These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 18428701)

  • 1. Eukaryotic gene prediction using GeneMark.hmm.
    Borodovsky M; Lomsadze A; Ivanov N; Mills R
    Curr Protoc Bioinformatics; 2003 May; Chapter 4():Unit4.6. PubMed ID: 18428701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prokaryotic gene prediction using GeneMark and GeneMark.hmm.
    Borodovsky M; Mills R; Besemer J; Lomsadze A
    Curr Protoc Bioinformatics; 2003 May; Chapter 4():Unit4.5. PubMed ID: 18428700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic generation of gene finders for eukaryotic species.
    Munch K; Krogh A
    BMC Bioinformatics; 2006 May; 7():263. PubMed ID: 16712739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using RepeatMasker to identify repetitive elements in genomic sequences.
    Chen N
    Curr Protoc Bioinformatics; 2004 May; Chapter 4():Unit 4.10. PubMed ID: 18428725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic methods of identifying genes in prokaryotic genomes: connections to the HMM theory.
    Azad RK; Borodovsky M
    Brief Bioinform; 2004 Jun; 5(2):118-30. PubMed ID: 15260893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training HMM structure with genetic algorithm for biological sequence analysis.
    Won KJ; Prügel-Bennett A; Krogh A
    Bioinformatics; 2004 Dec; 20(18):3613-9. PubMed ID: 15297297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding cis-regulatory modules in Drosophila using phylogenetic hidden Markov models.
    Wong WS; Nielsen R
    Bioinformatics; 2007 Aug; 23(16):2031-7. PubMed ID: 17550911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding genes in DNA with a Hidden Markov Model.
    Henderson J; Salzberg S; Fasman KH
    J Comput Biol; 1997; 4(2):127-41. PubMed ID: 9228612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does eukaryotic gene prediction work?
    Brent MR
    Nat Biotechnol; 2007 Aug; 25(8):883-5. PubMed ID: 17687368
    [No Abstract]   [Full Text] [Related]  

  • 10. PhyloPat: phylogenetic pattern analysis of eukaryotic genes.
    Hulsen T; de Vlieg J; Groenen PM
    BMC Bioinformatics; 2006 Sep; 7():398. PubMed ID: 16948844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized hierarchical markov models for the discovery of length-constrained sequence features from genome tiling arrays.
    Gupta M
    Biometrics; 2007 Sep; 63(3):797-805. PubMed ID: 17825011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminating between rate heterogeneity and interspecific recombination in DNA sequence alignments with phylogenetic factorial hidden Markov models.
    Husmeier D
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii166-72. PubMed ID: 16204097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sigma: multiple alignment of weakly-conserved non-coding DNA sequence.
    Siddharthan R
    BMC Bioinformatics; 2006 Mar; 7():143. PubMed ID: 16542424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern locator: a new tool for finding local sequence patterns in genomic DNA sequences.
    Mrázek J; Xie S
    Bioinformatics; 2006 Dec; 22(24):3099-100. PubMed ID: 17095514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Splice site identification by idlBNs.
    Castelo R; Guigó R
    Bioinformatics; 2004 Aug; 20 Suppl 1():i69-76. PubMed ID: 15262783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation algorithm for DNA sequences.
    Zhang CT; Gao F; Zhang R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041917. PubMed ID: 16383430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BioHMM: a heterogeneous hidden Markov model for segmenting array CGH data.
    Marioni JC; Thorne NP; Tavaré S
    Bioinformatics; 2006 May; 22(9):1144-6. PubMed ID: 16533818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEAKS: identification of regulatory motifs by their position in DNA sequences.
    Bellora N; Farré D; Mar Albà M
    Bioinformatics; 2007 Jan; 23(2):243-4. PubMed ID: 17098773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions.
    Besemer J; Lomsadze A; Borodovsky M
    Nucleic Acids Res; 2001 Jun; 29(12):2607-18. PubMed ID: 11410670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses.
    Besemer J; Borodovsky M
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W451-4. PubMed ID: 15980510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.