These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18428728)

  • 21. PERMOL: restraint-based protein homology modeling using DYANA or CNS.
    Möglich A; Weinfurtner D; Gronwald W; Maurer T; Kalbitzer HR
    Bioinformatics; 2005 May; 21(9):2110-1. PubMed ID: 15671120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A combinatorial pattern discovery approach for the prediction of membrane dipping (re-entrant) loops.
    Lasso G; Antoniw JF; Mullins JG
    Bioinformatics; 2006 Jul; 22(14):e290-7. PubMed ID: 16873484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting the tolerance of proteins to random amino acid substitution.
    Wilke CO; Bloom JD; Drummond DA; Raval A
    Biophys J; 2005 Dec; 89(6):3714-20. PubMed ID: 16150971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction and simulation of motion in pairs of transmembrane alpha-helices.
    Enosh A; Fleishman SJ; Ben-Tal N; Halperin D
    Bioinformatics; 2007 Jan; 23(2):e212-8. PubMed ID: 17237094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new method to model membrane protein structure based on silent amino acid substitutions.
    Briggs JA; Torres J; Arkin IT
    Proteins; 2001 Aug; 44(3):370-5. PubMed ID: 11455610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model-based approach for mining membrane protein crystallization trials.
    Asur S; Raman P; Otey ME; Parthasarathy S
    Bioinformatics; 2006 Jul; 22(14):e40-8. PubMed ID: 16873499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DFprot: a webtool for predicting local chain deformability.
    Garzón JI; Kovacs J; Abagyan R; Chacón P
    Bioinformatics; 2007 Apr; 23(7):901-2. PubMed ID: 17277334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction.
    Sasaki TN; Cetin H; Sasai M
    Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transmembrane proteins in the Protein Data Bank: identification and classification.
    Tusnády GE; Dosztányi Z; Simon I
    Bioinformatics; 2004 Nov; 20(17):2964-72. PubMed ID: 15180935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IgTM: an algorithm to predict transmembrane domains and topology in proteins.
    Peris P; López D; Campos M
    BMC Bioinformatics; 2008 Sep; 9():367. PubMed ID: 18783592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transmembrane helix prediction using amino acid property features and latent semantic analysis.
    Ganapathiraju M; Balakrishnan N; Reddy R; Klein-Seetharaman J
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S4. PubMed ID: 18315857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of protein structure classes with flexible neural tree.
    Bao W; Chen Y; Wang D
    Biomed Mater Eng; 2014; 24(6):3797-806. PubMed ID: 25227096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-throughput modeling and analysis of protein structural dynamics.
    Liu X; Karimi HA
    Brief Bioinform; 2007 Nov; 8(6):432-45. PubMed ID: 17485424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A systematic search method for the identification of tightly packed transmembrane parallel alpha-helices.
    Akula N; Pattabiraman N
    J Biomol Struct Dyn; 2005 Jun; 22(6):625-34. PubMed ID: 15842168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Andante: reducing side-chain rotamer search space during comparative modeling using environment-specific substitution probabilities.
    Smith RE; Lovell SC; Burke DF; Montalvao RW; Blundell TL
    Bioinformatics; 2007 May; 23(9):1099-105. PubMed ID: 17341496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TMDET: web server for detecting transmembrane regions of proteins by using their 3D coordinates.
    Tusnády GE; Dosztányi Z; Simon I
    Bioinformatics; 2005 Apr; 21(7):1276-7. PubMed ID: 15539454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlated substitution analysis and the prediction of amino acid structural contacts.
    Horner DS; Pirovano W; Pesole G
    Brief Bioinform; 2008 Jan; 9(1):46-56. PubMed ID: 18000015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple Alignment of protein structures and sequences for VMD.
    Eargle J; Wright D; Luthey-Schulten Z
    Bioinformatics; 2006 Feb; 22(4):504-6. PubMed ID: 16339280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution stability and variability in a simple model of globular proteins.
    Sear RP
    J Chem Phys; 2004 Jan; 120(2):998-1005. PubMed ID: 15267937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. VISTAL--a new 2D visualization tool of protein 3D structural alignments.
    Kolodny R; Honig B
    Bioinformatics; 2006 Sep; 22(17):2166-7. PubMed ID: 16837525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.