These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64. A new representation for protein secondary structure prediction based on frequent patterns. Birzele F; Kramer S Bioinformatics; 2006 Nov; 22(21):2628-34. PubMed ID: 16940325 [TBL] [Abstract][Full Text] [Related]
65. Classification of transmembrane segments in human proteins using wavelet-based energy. Kitsas IK; Hadjileontiadis LJ; Panas SM Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1225-8. PubMed ID: 18002184 [TBL] [Abstract][Full Text] [Related]
66. Quaternary structure predictions of transmembrane proteins starting from the monomer: a docking-based approach. Casciari D; Seeber M; Fanelli F BMC Bioinformatics; 2006 Jul; 7():340. PubMed ID: 16836758 [TBL] [Abstract][Full Text] [Related]
68. High-resolution modeling of transmembrane helical protein structures from distant homologues. Chen KY; Sun J; Salvo JS; Baker D; Barth P PLoS Comput Biol; 2014 May; 10(5):e1003636. PubMed ID: 24854015 [TBL] [Abstract][Full Text] [Related]
69. Improvement on a simplified model for protein folding simulation. Zhang M; Chen C; He Y; Xiao Y Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051919. PubMed ID: 16383657 [TBL] [Abstract][Full Text] [Related]
70. Flexibility and mobility in mesophilic and thermophilic homologous proteins from molecular dynamics and FoldUnfold method. Mamonova TB; Glyakina AV; Kurnikova MG; Galzitskaya OV J Bioinform Comput Biol; 2010 Jun; 8(3):377-94. PubMed ID: 20556851 [TBL] [Abstract][Full Text] [Related]
71. Mathematical characterization of protein transmembrane regions. Roy Choudhury A; Zhukov N; Novič M ScientificWorldJournal; 2013; 2013():607830. PubMed ID: 23690747 [TBL] [Abstract][Full Text] [Related]
72. TMM@: a web application for the analysis of transmembrane helix mobility. Skjaerven L; Jonassen I; Reuter N BMC Bioinformatics; 2007 Jul; 8():232. PubMed ID: 17601351 [TBL] [Abstract][Full Text] [Related]
73. A consensus procedure for predicting the location of alpha-helical transmembrane segments in proteins. Parodi LA; Granatir CA; Maggiora GM Comput Appl Biosci; 1994 Sep; 10(5):527-35. PubMed ID: 7828069 [TBL] [Abstract][Full Text] [Related]
74. Evolutionary models of amino acid substitutions based on the tertiary structure of their neighborhoods. Primetis E; Chavlis S; Pavlidis P Proteins; 2021 Nov; 89(11):1565-1576. PubMed ID: 34278605 [TBL] [Abstract][Full Text] [Related]
75. Predicting transmembrane helix packing arrangements using residue contacts and a force-directed algorithm. Nugent T; Jones DT PLoS Comput Biol; 2010 Mar; 6(3):e1000714. PubMed ID: 20333233 [TBL] [Abstract][Full Text] [Related]
76. Stereochemical criteria for prediction of the effects of proline mutations on protein stability. Bajaj K; Madhusudhan MS; Adkar BV; Chakrabarti P; Ramakrishnan C; Sali A; Varadarajan R PLoS Comput Biol; 2007 Dec; 3(12):e241. PubMed ID: 18069886 [TBL] [Abstract][Full Text] [Related]
77. Characterization and modeling of membrane proteins using sequence analysis. Reithmeier RA Curr Opin Struct Biol; 1995 Aug; 5(4):491-500. PubMed ID: 8528765 [TBL] [Abstract][Full Text] [Related]
78. The twilight zone between protein order and disorder. Szilágyi A; Györffy D; Závodszky P Biophys J; 2008 Aug; 95(4):1612-26. PubMed ID: 18441033 [TBL] [Abstract][Full Text] [Related]
79. Structural and functional impacts of amino acid substitutions that create blood group antigens: implications for immunogenicity. Howe JG; Stack G Transfusion; 2017 Mar; 57(3):541-553. PubMed ID: 28164302 [TBL] [Abstract][Full Text] [Related]
80. Mutation Sensitivity Maps: Identifying Residue Substitutions That Impact Protein Structure Via a Rigidity Analysis In Silico Mutation Approach. Siderius M; Jagodzinski F J Comput Biol; 2018 Jan; 25(1):89-102. PubMed ID: 29035580 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]