These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18428799)

  • 1. Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment.
    Voge CM; Kariolis M; MacDonald RA; Stegemann JP
    J Biomed Mater Res A; 2008 Jul; 86(1):269-77. PubMed ID: 18428799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels.
    MacDonald RA; Voge CM; Kariolis M; Stegemann JP
    Acta Biomater; 2008 Nov; 4(6):1583-92. PubMed ID: 18706876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A composite SWNT-collagen matrix: characterization and preliminary assessment as a conductive peripheral nerve regeneration matrix.
    Tosun Z; McFetridge PS
    J Neural Eng; 2010 Dec; 7(6):066002. PubMed ID: 20966538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures.
    Cummings CL; Gawlitta D; Nerem RM; Stegemann JP
    Biomaterials; 2004 Aug; 25(17):3699-706. PubMed ID: 15020145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering.
    MacDonald RA; Laurenzi BF; Viswanathan G; Ajayan PM; Stegemann JP
    J Biomed Mater Res A; 2005 Sep; 74(3):489-96. PubMed ID: 15973695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions.
    Crouzier T; Nimmagadda A; Nollert MU; McFetridge PS
    Langmuir; 2008 Nov; 24(22):13173-81. PubMed ID: 18947245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein-nanotube composite biomaterials.
    Voge CM; Johns J; Raghavan M; Morris MD; Stegemann JP
    J Biomed Mater Res A; 2013 Jan; 101(1):231-8. PubMed ID: 22865813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels.
    Henshaw DR; Attia E; Bhargava M; Hannafin JA
    J Orthop Res; 2006 Mar; 24(3):481-90. PubMed ID: 16453340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells.
    Cho Y; Borgens RB
    J Biomed Mater Res A; 2010 Nov; 95(2):510-7. PubMed ID: 20665676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.
    Tan W; Twomey J; Guo D; Madhavan K; Li M
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):111-20. PubMed ID: 20215088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medium density polyethylene composites with functionalized carbon nanotubes.
    Pulikkathara MX; Kuznetsov OV; Peralta IR; Wei X; Khabashesku VN
    Nanotechnology; 2009 May; 20(19):195602. PubMed ID: 19420641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix.
    Nieponice A; Maul TM; Cumer JM; Soletti L; Vorp DA
    J Biomed Mater Res A; 2007 Jun; 81(3):523-30. PubMed ID: 17133453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs.
    Webb K; Hitchcock RW; Smeal RM; Li W; Gray SD; Tresco PA
    J Biomech; 2006; 39(6):1136-44. PubMed ID: 16256125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrin gels exhibit improved biological, structural, and mechanical properties compared with collagen gels in cell-based tendon tissue-engineered constructs.
    Breidenbach AP; Dyment NA; Lu Y; Rao M; Shearn JT; Rowe DW; Kadler KE; Butler DL
    Tissue Eng Part A; 2015 Feb; 21(3-4):438-50. PubMed ID: 25266738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a micromanipulator-based loading device for mechanoregulation study of human mesenchymal stem cells in three-dimensional collagen constructs.
    Au-Yeung KL; Sze KY; Sham MH; Chan BP
    Tissue Eng Part C Methods; 2010 Feb; 16(1):93-107. PubMed ID: 19368498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin.
    Balestrini JL; Billiar KL
    J Biomech; 2006; 39(16):2983-90. PubMed ID: 16386746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation.
    Khang D; Park GE; Webster TJ
    J Biomed Mater Res A; 2008 Jul; 86(1):253-60. PubMed ID: 18186050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioreactor for biaxial mechanical stimulation to tissue engineered constructs.
    Wartella KA; Wayne JS
    J Biomech Eng; 2009 Apr; 131(4):044501. PubMed ID: 19275443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.
    Hong X; Stegemann JP; Deng CX
    Biomaterials; 2016 May; 88():12-24. PubMed ID: 26928595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of SWNT alters in vitro cell-SWNT interactions.
    Nimmagadda A; Thurston K; Nollert MU; McFetridge PS
    J Biomed Mater Res A; 2006 Mar; 76(3):614-25. PubMed ID: 16315191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.