These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 18428864)

  • 21. Structural bias in T4 RNA ligase-mediated 3'-adapter ligation.
    Zhuang F; Fuchs RT; Sun Z; Zheng Y; Robb GB
    Nucleic Acids Res; 2012 Apr; 40(7):e54. PubMed ID: 22241775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing RNA structure and metal-binding sites using terbium(III) footprinting.
    Harris DA; Walter NG
    Curr Protoc Nucleic Acid Chem; 2003 Aug; Chapter 6():Unit 6.8. PubMed ID: 18428913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A chloroplastic RNA ligase activity analogous to the bacterial and archaeal 2´-5' RNA ligase.
    Molina-Serrano D; Marqués J; Nohales MÁ; Flores R; Daròs JA
    RNA Biol; 2012 Mar; 9(3):326-33. PubMed ID: 22336712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of 4.5S RNA in the signal recognition particle of Escherichia coli as studied by enzymatic and chemical probing.
    Lentzen G; Moine H; Ehresmann C; Ehresmann B; Wintermeyer W
    RNA; 1996 Mar; 2(3):244-53. PubMed ID: 8608448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-resolved hydroxyl radical footprinting of RNA with X-rays.
    Woodson SA; Deras ML; Brenowitz M
    Curr Protoc Nucleic Acid Chem; 2001 Nov; Chapter 11():Unit 11.6. PubMed ID: 18428832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cleavage of RNA by an amphiphilic compound lacking traditional catalytic groups.
    Kovalev NA; Medvedeva DA; Zenkova MA; Vlassov VV
    Bioorg Chem; 2008 Apr; 36(2):33-45. PubMed ID: 18061645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs.
    Wittberger D; Berens C; Hammann C; Westhof E; Schroeder R
    J Mol Biol; 2000 Jul; 300(2):339-52. PubMed ID: 10873469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of domain enzymes from wheat RNA ligase for in vitro preparation of RNA molecules.
    Makino S; Sawasaki T; Endo Y; Takai K
    Biochem Biophys Res Commun; 2011 Jan; 404(4):1050-4. PubMed ID: 21187077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing nucleic acid structure with shape-selective rhodium and ruthenium complexes.
    Jackson BA; Barton JK
    Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 6():Unit 6.2. PubMed ID: 18428863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical probing of RNA in living cells.
    Wildauer M; Zemora G; Liebeg A; Heisig V; Waldsich C
    Methods Mol Biol; 2014; 1086():159-76. PubMed ID: 24136603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid magnesium chelation as a method to study real-time tertiary unfolding of RNA.
    Maglott EJ; Glick GD
    Curr Protoc Nucleic Acid Chem; 2001 Nov; Chapter 11():Unit 11.7. PubMed ID: 18428833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the RNase H cleavage kinetics and blood serum stability of the north-conformationally constrained and 2'-alkoxy modified oligonucleotides.
    Honcharenko D; Barman J; Varghese OP; Chattopadhyaya J
    Biochemistry; 2007 May; 46(19):5635-46. PubMed ID: 17411072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of single-base mutation in RNA using T4 RNA ligase-based nick-joining or DNAzyme-based nick-generation.
    Park K; Choi BR; Kim YS; Shin S; Hah SS; Jung W; Oh S; Kim DE
    Anal Biochem; 2011 Jul; 414(2):303-5. PubMed ID: 21453671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the structure of the regulatory region of human transferrin receptor messenger RNA and its interaction with iron regulatory protein-1.
    Schlegl J; Gegout V; Schläger B; Hentze MW; Westhof E; Ehresmann C; Ehresmann B; Romby P
    RNA; 1997 Oct; 3(10):1159-72. PubMed ID: 9326491
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A general two-step strategy to synthesize lariat RNAs.
    Wang Y; Silverman SK
    RNA; 2006 Feb; 12(2):313-21. PubMed ID: 16373486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA structural analysis by enzymatic digestion.
    Biondi E; Burke DH
    Methods Mol Biol; 2014; 1086():41-52. PubMed ID: 24136597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of nucleotide distances in RNA by means of copper phenanthroline-generated hydroxyl radical cleavage pattern.
    Hermann T; Heumann H
    RNA; 1995 Dec; 1(10):1009-17. PubMed ID: 8595556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides.
    Zhou C; Plashkevych O; Chattopadhyaya J
    J Org Chem; 2009 May; 74(9):3248-65. PubMed ID: 19348480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural analysis of RNA backbone using in-line probing.
    Nahvi A; Green R
    Methods Enzymol; 2013; 530():381-97. PubMed ID: 24034334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal methods for the analysis of RNA folding pathways.
    Draper DE; Bukhman YV; Gluick TC
    Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 11():Unit 11.3. PubMed ID: 18428829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.