These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18429616)

  • 1. Clar-Kekule structuring in armchair carbon nanotubes.
    Martín-Martínez FJ; Melchor S; Dobado JA
    Org Lett; 2008 May; 10(10):1991-4. PubMed ID: 18429616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge effects, electronic arrangement, and aromaticity patterns on finite-length carbon nanotubes.
    Martín-Martínez FJ; Melchor S; Dobado JA
    Phys Chem Chem Phys; 2011 Jul; 13(28):12844-57. PubMed ID: 21687895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes.
    Matsuo Y; Tahara K; Nakamura E
    Org Lett; 2003 Sep; 5(18):3181-4. PubMed ID: 12943382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers.
    Zhou Z; Zhao J; Schleyer Pv; Chen Z
    J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical studies on structures, 13C NMR chemical shifts, aromaticity, and chemical reactivity of finite-length open-ended armchair single-walled carbon nanotubes.
    Liu LV; Tian WQ; Chen YK; Zhang YA; Wang YA
    Nanoscale; 2010 Feb; 2(2):254-61. PubMed ID: 20644802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure and chemical reactivity of carbon nanotubes: a chemist's view.
    Joselevich E
    Chemphyschem; 2004 May; 5(5):619-24. PubMed ID: 15179713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calculations of phonon dispersion relations for single-wall carbon armchair and zigzag nanotubes.
    Wang Y; Zhang B; Jin Q; Li B; Ding D; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(5):1149-52. PubMed ID: 17329162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between thermal conductivity and bond length alternation in carbon nanotubes: a combined reverse nonequilibrium molecular dynamics--crystal orbital analysis.
    Alaghemandi M; Schulte J; Leroy F; Müller-Plathe F; Böhm MC
    J Comput Chem; 2011 Jan; 32(1):121-33. PubMed ID: 20645298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chirality and diameter dependent x-ray absorption of single walled carbon nanotubes.
    Gao B; Wu Z; Agren H; Luo Y
    J Chem Phys; 2009 Jul; 131(3):034704. PubMed ID: 19624218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study of a carbon nanobud.
    Wu X; Zeng XC
    ACS Nano; 2008 Jul; 2(7):1459-65. PubMed ID: 19206315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anode distance effect on field electron emission from carbon nanotubes: a molecular/quantum mechanical simulation.
    He C; Wang W; Deng S; Xu N; Li Z; Chen G; Peng J
    J Phys Chem A; 2009 Jun; 113(25):7048-53. PubMed ID: 19534558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-length models of carbon nanotubes based on Clar sextet theory.
    Baldoni M; Sgamellotti A; Mercuri F
    Org Lett; 2007 Oct; 9(21):4267-70. PubMed ID: 17854196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic response properties of carbon nanotubes in magnetic fields.
    Sebastiani D; Kudin KN
    ACS Nano; 2008 Apr; 2(4):661-8. PubMed ID: 19206596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A density functional theory study of shake-up satellites in photoemission of carbon fullerenes and nanotubes.
    Gao B; Wu Z; Luo Y
    J Chem Phys; 2008 Jun; 128(23):234704. PubMed ID: 18570516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clar valence bond representation of pi-bonding in carbon nanotubes.
    Ormsby JL; King BT
    J Org Chem; 2004 Jun; 69(13):4287-91. PubMed ID: 15202881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrochemical sensor for 3,4-dihydroxyphenylacetic acid with carbon nanotubes as electronic transducer and synthetic cyclophane as recognition element.
    Yan J; Zhou Y; Yu P; Su L; Mao L; Zhang D; Zhu D
    Chem Commun (Camb); 2008 Sep; (36):4330-2. PubMed ID: 18802560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypothetical toroidal, cylindrical, and helical analogs of C60.
    Chuang C; Jin BY
    J Mol Graph Model; 2009 Oct; 28(3):220-5. PubMed ID: 19733491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.