These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 18429616)
21. First-principles investigations on the functionalization of chiral and non-chiral carbon nanotubes by Diels-Alder cycloaddition reactions. Mercuri F; Sgamellotti A Phys Chem Chem Phys; 2009 Jan; 11(3):563-7. PubMed ID: 19283274 [TBL] [Abstract][Full Text] [Related]
22. Glycine interaction with carbon nanotubes: an ab initio study. Mavrandonakis A; Farantos SC; Froudakis GE J Phys Chem B; 2006 Mar; 110(12):6048-50. PubMed ID: 16553415 [TBL] [Abstract][Full Text] [Related]
23. Nanotubes: number of Kekulé structures and aromaticity. Lukovits I; Graovac A; Kálmán E; Kaptay G; Nagy P; Nikolić S; Sytchev J; Trinajstić N J Chem Inf Comput Sci; 2003; 43(2):609-14. PubMed ID: 12653528 [TBL] [Abstract][Full Text] [Related]
24. Ferromagnetism/antiferromagnetism transition between semihydrogenated and fully-aminated single-wall carbon nanotubes. Deng Q; Zhao L; Luo Y; Zhang M; Jing L; Zhao Y Nanoscale; 2011 Sep; 3(9):3743-6. PubMed ID: 21804988 [TBL] [Abstract][Full Text] [Related]
25. Modeling the structure-property relationships of nanoneedles: A journey toward nanomedicine. Poater A; Saliner AG; Carbó-Dorca R; Poater J; Solà M; Cavallo L; Worth AP J Comput Chem; 2009 Jan; 30(2):275-84. PubMed ID: 18615420 [TBL] [Abstract][Full Text] [Related]
26. Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster. Gómez-Gualdrón DA; Balbuena PB Nanotechnology; 2009 May; 20(21):215601. PubMed ID: 19423932 [TBL] [Abstract][Full Text] [Related]
27. Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes. Lee SU; Belosludov RV; Mizuseki H; Kawazoe Y Small; 2009 Aug; 5(15):1769-75. PubMed ID: 19360721 [TBL] [Abstract][Full Text] [Related]
28. First-principles calculation of the electronic structure and energy loss near edge spectra of chiral carbon nanotubes. Bertoni G; Calmels L Micron; 2006; 37(5):486-91. PubMed ID: 16376550 [TBL] [Abstract][Full Text] [Related]
30. New insight into carbon-nanotube electronic-structure selectivity. Sumpter BG; Jiang DE; Meunier V Small; 2008 Nov; 4(11):2035-42. PubMed ID: 18924129 [TBL] [Abstract][Full Text] [Related]
31. The influence of carbon nanotubes on enzyme activity and structure: investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Cang-Rong JT; Pastorin G Nanotechnology; 2009 Jun; 20(25):255102. PubMed ID: 19487802 [TBL] [Abstract][Full Text] [Related]
32. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations. Du A; Chen Y; Zhu Z; Lu G; Smith SC J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268 [TBL] [Abstract][Full Text] [Related]
33. Buckling of carbon nanotubes at high temperatures. Zhang YY; Wang CM; Tan VB Nanotechnology; 2009 May; 20(21):215702. PubMed ID: 19423941 [TBL] [Abstract][Full Text] [Related]
34. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters. Wang HW; Wang BC; Chen WH; Hayashi M J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507 [TBL] [Abstract][Full Text] [Related]
35. Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension. Tsyboulski DA; Bachilo SM; Kolomeisky AB; Weisman RB ACS Nano; 2008 Sep; 2(9):1770-6. PubMed ID: 19206415 [TBL] [Abstract][Full Text] [Related]
36. Extended Hückel theory for carbon nanotubes: band structure and transport properties. Zienert A; Schuster J; Gessner T J Phys Chem A; 2013 May; 117(17):3650-4. PubMed ID: 23534403 [TBL] [Abstract][Full Text] [Related]
37. Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Ju SY; Doll J; Sharma I; Papadimitrakopoulos F Nat Nanotechnol; 2008 Jun; 3(6):356-62. PubMed ID: 18654547 [TBL] [Abstract][Full Text] [Related]
38. Carbon nanotube-acridine nanohybrids: spectroscopic characterization of photoinduced electron transfer. Mackiewicz N; Delaire JA; Rutherford AW; Doris E; Mioskowski C Chemistry; 2009; 15(15):3882-8. PubMed ID: 19229943 [TBL] [Abstract][Full Text] [Related]
39. Electronic properties of capped, finite-length armchair carbon nanotubes in an electric field. Chen C; Tsai CC; Lu JM; Hwang CC J Phys Chem B; 2006 Jun; 110(25):12384-7. PubMed ID: 16800563 [TBL] [Abstract][Full Text] [Related]