BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 18430164)

  • 1. Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck.
    Kuratani S
    Dev Growth Differ; 2008 Jun; 50 Suppl 1():S189-94. PubMed ID: 18430164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary perspectives from development of mesodermal components in the lamprey.
    Kusakabe R; Kuratani S
    Dev Dyn; 2007 Sep; 236(9):2410-20. PubMed ID: 17477393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins.
    Kusakabe R; Kuraku S; Kuratani S
    Dev Biol; 2011 Feb; 350(1):217-27. PubMed ID: 21035440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics.
    Kuratani S; Kuraku S; Murakami Y
    Genesis; 2002 Nov; 34(3):175-83. PubMed ID: 12395382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of gnathostome development: Insight from chondrichthyan embryology.
    Gillis JA; Shubin NH
    Genesis; 2009 Dec; 47(12):825-41. PubMed ID: 19882670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an agnathan vertebrate, Lampetra japonica.
    Kuratani S; Horigome N; Hirano S
    Dev Biol; 1999 Jun; 210(2):381-400. PubMed ID: 10357898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey.
    Kusakabe R; Kuratani S
    Dev Dyn; 2005 Dec; 234(4):824-34. PubMed ID: 16252276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cephalic neural crest cells and the evolution of craniofacial structures in vertebrates: morphological and embryological significance of the premandibular-mandibular boundary.
    Kuratani S
    Zoology (Jena); 2005; 108(1):13-25. PubMed ID: 16351951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Hedgehog and FGF signalling in the lamprey telencephalon: evolution of regionalization and dorsoventral patterning of the vertebrate forebrain.
    Sugahara F; Aota S; Kuraku S; Murakami Y; Takio-Ogawa Y; Hirano S; Kuratani S
    Development; 2011 Mar; 138(6):1217-26. PubMed ID: 21343370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights from sharks: evolutionary and developmental models of fin development.
    Cole NJ; Currie PD
    Dev Dyn; 2007 Sep; 236(9):2421-31. PubMed ID: 17676641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pax1/Pax9-Related genes in an agnathan vertebrate, Lampetra japonica: expression pattern of LjPax9 implies sequential evolutionary events toward the gnathostome body plan.
    Ogasawara M; Shigetani Y; Hirano S; Satoh N; Kuratani S
    Dev Biol; 2000 Jul; 223(2):399-410. PubMed ID: 10882524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain segmentation and trigeminal projections in the lamprey; with reference to vertebrate brain evolution.
    Murakami Y; Kuratani S
    Brain Res Bull; 2008 Mar; 75(2-4):218-24. PubMed ID: 18331874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental fate of the mandibular mesoderm in the lamprey, Lethenteron japonicum: Comparative morphology and development of the gnathostome jaw with special reference to the nature of the trabecula cranii.
    Kuratani S; Murakami Y; Nobusada Y; Kusakabe R; Hirano S
    J Exp Zool B Mol Dev Evol; 2004 Sep; 302(5):458-68. PubMed ID: 15580643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish).
    Shimeld SM; Donoghue PC
    Development; 2012 Jun; 139(12):2091-9. PubMed ID: 22619386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that mechanisms of fin development evolved in the midline of early vertebrates.
    Freitas R; Zhang G; Cohn MJ
    Nature; 2006 Aug; 442(7106):1033-7. PubMed ID: 16878142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of cephalic neural crest cells in embryos of Lampetra japonica, with special reference to the evolution of the jaw.
    Horigome N; Myojin M; Ueki T; Hirano S; Aizawa S; Kuratani S
    Dev Biol; 1999 Mar; 207(2):287-308. PubMed ID: 10068464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sea lamprey Petromyzon marinus: a model for evolutionary and developmental biology.
    Nikitina N; Bronner-Fraser M; Sauka-Spengler T
    Cold Spring Harb Protoc; 2009 Jan; 2009(1):pdb.emo113. PubMed ID: 20147008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lamprey contractile protein genes mark different populations of skeletal muscles during development.
    Kusakabe R; Takechi M; Tochinai S; Kuratani S
    J Exp Zool B Mol Dev Evol; 2004 Mar; 302(2):121-33. PubMed ID: 15054856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives.
    Kuratani S; Nobusada Y; Horigome N; Shigetani Y
    Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1615-32. PubMed ID: 11604127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw evolution.
    Shigetani Y; Sugahara F; Kawakami Y; Murakami Y; Hirano S; Kuratani S
    Science; 2002 May; 296(5571):1316-9. PubMed ID: 12016315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.