BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18430250)

  • 1. Genome classification by gene distribution: an overlapping subspace clustering approach.
    Li J; Halgamuge SK; Tang SL
    BMC Evol Biol; 2008 Apr; 8():116. PubMed ID: 18430250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reticulate representation of evolutionary and functional relationships between phage genomes.
    Lima-Mendez G; Van Helden J; Toussaint A; Leplae R
    Mol Biol Evol; 2008 Apr; 25(4):762-77. PubMed ID: 18234706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria.
    Proux C; van Sinderen D; Suarez J; Garcia P; Ladero V; Fitzgerald GF; Desiere F; Brüssow H
    J Bacteriol; 2002 Nov; 184(21):6026-36. PubMed ID: 12374837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene function prediction based on genomic context clustering and discriminative learning: an application to bacteriophages.
    Li J; Halgamuge SK; Kells CI; Tang SL
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S6. PubMed ID: 17570149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Paenibacillus larvae bacteriophages and their genomic relationships to firmicute bacteriophages.
    Merrill BD; Grose JH; Breakwell DP; Burnett SH
    BMC Genomics; 2014 Aug; 15(1):745. PubMed ID: 25174730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium perfringens bacteriophages ΦCP39O and ΦCP26F: genomic organization and proteomic analysis of the virions.
    Seal BS; Fouts DE; Simmons M; Garrish JK; Kuntz RL; Woolsey R; Schegg KM; Kropinski AM; Ackermann HW; Siragusa GR
    Arch Virol; 2011 Jan; 156(1):25-35. PubMed ID: 20963614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PhamClust: a phage genome clustering tool using proteomic equivalence.
    Gauthier CH; Hatfull GF
    mSystems; 2023 Oct; 8(5):e0044323. PubMed ID: 37791778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution.
    Loessner MJ; Inman RB; Lauer P; Calendar R
    Mol Microbiol; 2000 Jan; 35(2):324-40. PubMed ID: 10652093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site.
    Dorscht J; Klumpp J; Bielmann R; Schmelcher M; Born Y; Zimmer M; Calendar R; Loessner MJ
    J Bacteriol; 2009 Dec; 191(23):7206-15. PubMed ID: 19783628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole genome sequencing and comparative genomic analyses of two Vibrio cholerae O139 Bengal-specific Podoviruses to other N4-like phages reveal extensive genetic diversity.
    Fouts DE; Klumpp J; Bishop-Lilly KA; Rajavel M; Willner KM; Butani A; Henry M; Biswas B; Li M; Albert MJ; Loessner MJ; Calendar R; Sozhamannan S
    Virol J; 2013 May; 10():165. PubMed ID: 23714204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics of lactococcal phages: insight from the complete genome sequence of Lactococcus lactis phage BK5-T.
    Desiere F; Mahanivong C; Hillier AJ; Chandry PS; Davidson BE; Brüssow H
    Virology; 2001 May; 283(2):240-52. PubMed ID: 11336549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UFV-P2 as a member of the Luz24likevirus genus: a new overview on comparative functional genome analyses of the LUZ24-like phages.
    Eller MR; Vidigal PM; Salgado RL; Alves MP; Dias RS; da Silva CC; de Carvalho AF; Kropinski A; De Paula SO
    BMC Genomics; 2014 Jan; 15():7. PubMed ID: 24384011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis.
    Zimmer M; Sattelberger E; Inman RB; Calendar R; Loessner MJ
    Mol Microbiol; 2003 Oct; 50(1):303-17. PubMed ID: 14507382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of Streptococcus thermophilus bacteriophage genomes by modular exchanges followed by point mutations and small deletions and insertions.
    Desiere F; Lucchini S; Brüssow H
    Virology; 1998 Feb; 241(2):345-56. PubMed ID: 9499809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the lysogeny DNA module from the temperate Streptococcus thermophilus bacteriophage phi Sfi21.
    Bruttin A; Desiere F; Lucchini S; Foley S; Brüssow H
    Virology; 1997 Jun; 233(1):136-48. PubMed ID: 9201223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic diversity among five T4-like bacteriophages.
    Nolan JM; Petrov V; Bertrand C; Krisch HM; Karam JD
    Virol J; 2006 May; 3():30. PubMed ID: 16716236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First genome sequences of Achromobacter phages reveal new members of the N4 family.
    Wittmann J; Dreiseikelmann B; Rohde M; Meier-Kolthoff JP; Bunk B; Rohde C
    Virol J; 2014 Jan; 11():14. PubMed ID: 24468270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: whole genome comparison of cos-site phages Sfi19 and Sfi21.
    Lucchini S; Desiere F; Brüssow H
    Virology; 1999 Aug; 260(2):232-43. PubMed ID: 10417258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer molecular pattern discovery by subspace consensus kernel classification.
    Han X
    Comput Syst Bioinformatics Conf; 2007; 6():55-65. PubMed ID: 17951812
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Evseev P; Lukianova A; Sykilinda N; Gorshkova A; Bondar A; Shneider M; Kabilov M; Drucker V; Miroshnikov K
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638693
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.