These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18430413)

  • 1. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation.
    Han X; Ma H; Jiao A; Critser JK
    Cryobiology; 2008 Jun; 56(3):195-203. PubMed ID: 18430413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.
    Jiao A; Han X; Critser JK; Ma H
    Cryobiology; 2006 Jun; 52(3):386-92. PubMed ID: 16616118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.
    Santos MV; Sansinena M; Zaritzky N; Chirife J
    Cryo Letters; 2012; 33(1):31-40. PubMed ID: 22434120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of cooling rates in vitrification systems used for oocyte cryopreservation.
    Sansinena M; Santos MV; Zaritzky N; Chirife J
    Cryobiology; 2011 Aug; 63(1):32-7. PubMed ID: 21540134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation into thermal effects of pre-cooling zone in vitrification-based cryopreservation process.
    Tsai HH; Tsai CH; Wu WT; Chen FZ; Chiang PJ
    Cryobiology; 2015 Feb; 70(1):32-7. PubMed ID: 25481669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DETERMINATION OF CONVECTIVE HEAT TRANSFER COEFFICIENT AT THE OUTER SURFACE OF A CRYOVIAL BEING PLUNGED INTO LIQUID NITROGEN.
    Wang T; Zhao G; Tang HY; Jiang ZD
    Cryo Letters; 2015; 36(4):285-8. PubMed ID: 26576004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.
    Santos MV; Sansinena M; Chirife J; Zaritzky N
    Cryobiology; 2014 Dec; 69(3):488-95. PubMed ID: 25445573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat transfer coefficient of cryotop during freezing.
    Li WJ; Zhou XL; Wang HS; Liu BL; Dai JJ
    Cryo Letters; 2013; 34(3):255-60. PubMed ID: 23812315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis to determine the performance of different oocyte vitrification devices for cryopreservation.
    Li W; Zhou X; Wang H; Liu B
    Cryo Letters; 2012; 33(2):144-50. PubMed ID: 22576118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects on rapid cooling of small samples in quenching.
    Cao Q; Hua TC
    Ann N Y Acad Sci; 1998 Sep; 858():262-9. PubMed ID: 9988670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.
    Sansinena M; Santos MV; Zaritzky N; Chirife J
    Theriogenology; 2012 May; 77(8):1717-21. PubMed ID: 22225685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conduction Cooling and Plasmonic Heating Dramatically Increase Droplet Vitrification Volumes for Cell Cryopreservation.
    Zhan L; Guo SZ; Kangas J; Shao Q; Shiao M; Khosla K; Low WC; McAlpine MC; Bischof J
    Adv Sci (Weinh); 2021 Jun; 8(11):2004605. PubMed ID: 34141523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing.
    Shi M; Ling K; Yong KW; Li Y; Feng S; Zhang X; Pingguan-Murphy B; Lu TJ; Xu F
    Sci Rep; 2015 Dec; 5():17928. PubMed ID: 26655688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced heat transfer by medical gauze for cell vitrification with French straw.
    Tao S; Liu B
    Cryo Letters; 2023; 44(5):258-262. PubMed ID: 38032305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental determination of surface heat transfer coefficient in a dry ice-ethanol cooling bath using a numerical approach.
    Santos MV; Sansinena M; Zaritzky N; Chirife J
    Cryo Letters; 2017; 38(2):119-124. PubMed ID: 28534055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parasite cryopreservation by vitrification.
    James ER
    Cryobiology; 2004 Dec; 49(3):201-10. PubMed ID: 15615606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical prediction of the effect of heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of spermatozoa.
    Sansinen M; Santos MV; Zaritzky N; Baez R; Chirife J
    Cryo Letters; 2010; 31(2):120-9. PubMed ID: 20687454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.
    Eisenberg DP; Bischof JC; Rabin Y
    J Biomech Eng; 2016 Jan; 138(1):. PubMed ID: 26592974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and experimental studies of enhanced cooling by medical gauze for cell cryopreservation by vitrification.
    Zhang Y; Zhao G; Chapal Hossain SM; He X
    Int J Heat Mass Transf; 2017 Nov; 114():1-7. PubMed ID: 29398719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: a study using murine embryonic stem cells.
    He X; Park EY; Fowler A; Yarmush ML; Toner M
    Cryobiology; 2008 Jun; 56(3):223-32. PubMed ID: 18462712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.