These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 1843046)

  • 1. Hydrodynamic endurance test of the prosthetic valve used in the various types of the ventricular assist device.
    Nitta S; Yambe T; Katahira Y; Sonobe T; Saijoh Y; Naganuma S; Akiho H; Kakinuma Y; Tanaka M; Miura M
    Sci Rep Res Inst Tohoku Univ Med; 1991 Dec; 38(2-4):57-62. PubMed ID: 1843046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of a new silicone tri-leaflet valve seamlessly assembled with blood chamber for a low-cost ventricular assist device.
    Hirai S; Fukunaga S; Sueshiro M; Watari M; Sueda T; Matsuura Y
    Hiroshima J Med Sci; 1998 Jun; 47(2):47-55. PubMed ID: 9674340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of ventricular input impedance on the hydrodynamic performance of bioprosthetic aortic roots in vitro.
    Jennings LM; Butterfield M; Walker PG; Watterson KG; Fisher J
    J Heart Valve Dis; 2001 Mar; 10(2):269-75. PubMed ID: 11297215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative developments of the heart valves designed for use in ventricular assist devices.
    Goubergrits L; Affeld K; Kertzscher U
    Expert Rev Med Devices; 2005 Jan; 2(1):61-71. PubMed ID: 16293030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study on the Reynolds and viscous shear stress of bileaflet mechanical heart valves in a pneumatic ventricular assist device.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):348-54. PubMed ID: 19521236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of prosthetic valve hydrodynamic function: objective testing using statistical multilevel modeling.
    Bernacca GM; McColl JH; Wheatley DJ
    J Heart Valve Dis; 2004 May; 13(3):467-77. PubMed ID: 15222295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Design, manufacturing, and testing of a pulsatile ventricular assist device].
    Leirner AA; Oshiro MS; Hayashida SA; Marques EF; Maizato MJ; Stolf NA; Jatene AD
    Arq Bras Cardiol; 1994 Sep; 63(3):239-45. PubMed ID: 7778999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a new pulsatile ventricular assist device.
    Kurosaki T; Sakai H; Ninomiya S; Fukunaga S; Sueda T
    Hiroshima J Med Sci; 2006 Mar; 55(1):29-34. PubMed ID: 16594550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathology in patients with ventricular assist devices: a study of 21 autopsies, 24 ventricular apical core biopsies and 24 explanted hearts.
    Rose AG; Park SJ
    Cardiovasc Pathol; 2005; 14(1):19-23. PubMed ID: 15710287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical heart valve performance in a pulsatile pediatric ventricular assist device.
    Zapanta CM; Dourte LM; Doxtater BJ; Lukic B; Weiss WJ
    ASAIO J; 2007; 53(1):87-96. PubMed ID: 17237654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A case in which biventricular assist device support was required after aortic valve replacement with a bioprosthetic valve.
    Koizumi K; Yozu R; Shin H; Tsutsumi K; Enoki C; Iino Y; Matayoshi T; Morita M
    J Artif Organs; 2003; 6(3):218-21. PubMed ID: 14598107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: using a monoleaflet valve.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2008; 54(1):25-30. PubMed ID: 18204312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative blood damage in the three phases of a prosthetic heart valve flow cycle.
    Lamson TC; Rosenberg G; Geselowitz DB; Deutsch S; Stinebring DR; Frangos JA; Tarbell JM
    ASAIO J; 1993; 39(3):M626-33. PubMed ID: 8268614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an algorithm to regulate pump output for a closed air-loop type pneumatic biventricular assist device.
    Nam KW; Lee JJ; Hwang CM; Choi J; Choi H; Choi SW; Sun K
    Artif Organs; 2009 Dec; 33(12):1063-8. PubMed ID: 19604228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical model of flow in a sac-type ventricular assist device.
    Avrahami I; Rosenfeld M; Raz S; Einav S
    Artif Organs; 2006 Jul; 30(7):529-38. PubMed ID: 16836734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new flow model for Doppler ultrasound study of prosthetic heart valves.
    Durand LG; Garcia D; Sakr F; Sava H; Cimon R; Pibarot P; Fenster A; Dumesnil JG
    J Heart Valve Dis; 1999 Jan; 8(1):85-95. PubMed ID: 10096489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hemodynamic effects of mechanical prosthetic valve type and orientation on fluid mechanical energy loss and pressure drop in in vitro models of ventricular hypertrophy.
    Travis BR; Heinrich RS; Ensley AE; Gibson DE; Hashim S; Yoganathan AP
    J Heart Valve Dis; 1998 May; 7(3):345-54. PubMed ID: 9651851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Problems in patients with use of a ventricular assist device].
    Nishimura K; Yamazato A; Aoshima M; Fukumasu H; Kubo S; Hirata K; Okabayashi H; Nomoto S; Okamoto Y; Ban T
    J Cardiol; 1990; 20(2):473-82. PubMed ID: 2104421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term durability test of axial-flow ventricular assist device under pulsatile flow.
    Nishida M; Kosaka R; Maruyama O; Yamane T; Shirasu A; Tatsumi E; Taenaka Y
    J Artif Organs; 2017 Mar; 20(1):26-33. PubMed ID: 27815718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and control of the atrio-aortic left ventricular assist device based on O2 consumption.
    Drzewiecki GM; Pilla JJ; Welkowitz W
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):128-37. PubMed ID: 2312137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.