These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18430480)

  • 1. Artificial molecular sieves and filters: a new paradigm for biomolecule separation.
    Fu J; Mao P; Han J
    Trends Biotechnol; 2008 Jun; 26(6):311-20. PubMed ID: 18430480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreasing effective nanofluidic filter size by modulating electrical double layers: separation enhancement in microfabricated nanofluidic filters.
    Bow H; Fu J; Han J
    Electrophoresis; 2008 Dec; 29(23):4646-51. PubMed ID: 19016242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofluidic technology for biomolecule applications: a critical review.
    Napoli M; Eijkel JC; Pennathur S
    Lab Chip; 2010 Apr; 10(8):957-85. PubMed ID: 20358103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Million-fold preconcentration of proteins and peptides by nanofluidic filter.
    Wang YC; Stevens AL; Han J
    Anal Chem; 2005 Jul; 77(14):4293-9. PubMed ID: 16013838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal atomistic modifications of material surfaces: design of selective nesting sites for biomolecules.
    Wang B; Král P
    Small; 2007 Apr; 3(4):580-4. PubMed ID: 17328013
    [No Abstract]   [Full Text] [Related]  

  • 6. Two-dimensional protein separation in microfluidic devices.
    Chen H; Fan ZH
    Electrophoresis; 2009 Mar; 30(5):758-65. PubMed ID: 19197899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotechnology for membranes, filters and sieves. A series of mini-reviews covering new trends in fundamental and applied research, and potential applications of miniaturised technologies.
    Eijkel JC; van den Berg A
    Lab Chip; 2006 Jan; 6(1):19-23. PubMed ID: 16372065
    [No Abstract]   [Full Text] [Related]  

  • 8. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins.
    Fu J; Schoch RB; Stevens AL; Tannenbaum SR; Han J
    Nat Nanotechnol; 2007 Feb; 2(2):121-8. PubMed ID: 18654231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro total analysis system (micro-TAS) in biotechnology.
    Lee SJ; Lee SY
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):289-99. PubMed ID: 14714150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution micropatterned Teflon AF substrates for biocompatible nanofluidic devices.
    Czolkos I; Hakonen B; Orwar O; Jesorka A
    Langmuir; 2012 Feb; 28(6):3200-5. PubMed ID: 22204476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass diffusion-based separation of sugars in a microfluidic contactor with nanofiltration membranes.
    Kolfschoten RC; Janssen AE; Boom RM
    J Sep Sci; 2011 Jun; 34(11):1338-46. PubMed ID: 21495190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the separation of macromolecules: a review of current computer simulation methods.
    Slater GW; Holm C; Chubynsky MV; de Haan HW; Dubé A; Grass K; Hickey OA; Kingsburry C; Sean D; Shendruk TN; Zhan L
    Electrophoresis; 2009 Mar; 30(5):792-818. PubMed ID: 19260004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges.
    Variola F; Vetrone F; Richert L; Jedrzejowski P; Yi JH; Zalzal S; Clair S; Sarkissian A; Perepichka DF; Wuest JD; Rosei F; Nanci A
    Small; 2009 May; 5(9):996-1006. PubMed ID: 19360718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembling materials with DNA as the guide.
    Aldaye FA; Palmer AL; Sleiman HF
    Science; 2008 Sep; 321(5897):1795-9. PubMed ID: 18818351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies.
    Rivalain N; Roquain J; Demazeau G
    Biotechnol Adv; 2010; 28(6):659-72. PubMed ID: 20398747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanobiocatalysis and its potential applications.
    Kim J; Grate JW; Wang P
    Trends Biotechnol; 2008 Nov; 26(11):639-46. PubMed ID: 18804884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital microfluidic method for protein extraction by precipitation.
    Jebrail MJ; Wheeler AR
    Anal Chem; 2009 Jan; 81(1):330-5. PubMed ID: 19117460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels.
    Davidson C; Xuan X
    Electrophoresis; 2008 Mar; 29(5):1125-30. PubMed ID: 18246575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Array and lab on a chip technology for protein characterization.
    Figeys D
    Curr Opin Mol Ther; 1999 Dec; 1(6):685-94. PubMed ID: 19629865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.