These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18430893)

  • 1. Riboswitch effectors as protein enzyme cofactors.
    Cochrane JC; Strobel SA
    RNA; 2008 Jun; 14(6):993-1002. PubMed ID: 18430893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional diversity of organic molecule enzyme cofactors.
    Richter M
    Nat Prod Rep; 2013 Oct; 30(10):1324-45. PubMed ID: 23934236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chemical versatility of RNA.
    Hiller DA; Strobel SA
    Philos Trans R Soc Lond B Biol Sci; 2011 Oct; 366(1580):2929-35. PubMed ID: 21930584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a coenzyme by the glmS ribozyme-riboswitch suggests primordial expansion of RNA chemistry by small molecules.
    Ferré-D'Amaré AR
    Philos Trans R Soc Lond B Biol Sci; 2011 Oct; 366(1580):2942-8. PubMed ID: 21930586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies of the purine and SAM binding riboswitches.
    Gilbert SD; Montange RK; Stoddard CD; Batey RT
    Cold Spring Harb Symp Quant Biol; 2006; 71():259-68. PubMed ID: 17381305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes.
    Micura R; Höbartner C
    Chem Soc Rev; 2020 Oct; 49(20):7331-7353. PubMed ID: 32944725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inclusion of thiamine diphosphate and S-adenosylmethionine at their chemically active sites.
    Schrader T; Fokkens M; Klärner FG; Polkowska J; Bastkowski F
    J Org Chem; 2005 Dec; 70(25):10227-37. PubMed ID: 16323831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2010 Mar; 16(3):598-609. PubMed ID: 20106958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A divalent cation-dependent variant of the
    Lau MW; Trachman RJ; Ferré-D'Amaré AR
    RNA; 2017 Mar; 23(3):355-364. PubMed ID: 27932587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme.
    Miao Z; Adamiak RW; Antczak M; Batey RT; Becka AJ; Biesiada M; Boniecki MJ; Bujnicki JM; Chen SJ; Cheng CY; Chou FC; Ferré-D'Amaré AR; Das R; Dawson WK; Ding F; Dokholyan NV; Dunin-Horkawicz S; Geniesse C; Kappel K; Kladwang W; Krokhotin A; Łach GE; Major F; Mann TH; Magnus M; Pachulska-Wieczorek K; Patel DJ; Piccirilli JA; Popenda M; Purzycka KJ; Ren A; Rice GM; Santalucia J; Sarzynska J; Szachniuk M; Tandon A; Trausch JJ; Tian S; Wang J; Weeks KM; Williams B; Xiao Y; Xu X; Zhang D; Zok T; Westhof E
    RNA; 2017 May; 23(5):655-672. PubMed ID: 28138060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-Adenosyl Methionine Cofactor Modifications Enhance the Biocatalytic Repertoire of Small Molecule C-Alkylation.
    McKean IJW; Sadler JC; Cuetos A; Frese A; Humphreys LD; Grogan G; Hoskisson PA; Burley GA
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17583-17588. PubMed ID: 31573135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A thiamin-utilizing ribozyme decarboxylates a pyruvate-like substrate.
    Cernak P; Sen D
    Nat Chem; 2013 Nov; 5(11):971-7. PubMed ID: 24153377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flipping off the riboswitch: RNA structures that control gene expression.
    Sashital DG; Butcher SE
    ACS Chem Biol; 2006 Jul; 1(6):341-5. PubMed ID: 17163768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coenzymes as coribozymes.
    Jadhav VR; Yarus M
    Biochimie; 2002 Sep; 84(9):877-88. PubMed ID: 12458080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the structure, function of thiamine pyrophosphate riboswitch, and designing small molecules for antibacterial activity.
    Wakchaure PD; Ganguly B
    Wiley Interdiscip Rev RNA; 2023; 14(4):e1774. PubMed ID: 36594112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.
    Serganov A; Polonskaia A; Phan AT; Breaker RR; Patel DJ
    Nature; 2006 Jun; 441(7097):1167-71. PubMed ID: 16728979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor.
    Cochrane JC; Lipchock SV; Strobel SA
    Chem Biol; 2007 Jan; 14(1):97-105. PubMed ID: 17196404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches.
    Cressina E; Chen L; Moulin M; Leeper FJ; Abell C; Smith AG
    Biochem Soc Trans; 2011 Apr; 39(2):652-7. PubMed ID: 21428956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch.
    Serganov A; Huang L; Patel DJ
    Nature; 2009 Mar; 458(7235):233-7. PubMed ID: 19169240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial ribozyme switches containing natural riboswitch aptamer domains.
    Wieland M; Benz A; Klauser B; Hartig JS
    Angew Chem Int Ed Engl; 2009; 48(15):2715-8. PubMed ID: 19156802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.