These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Continuous flow separation of particles within an asymmetric microfluidic device. Zhang X; Cooper JM; Monaghan PB; Haswell SJ Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Choi S; Park JK Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274 [TBL] [Abstract][Full Text] [Related]
6. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Choi S; Park JK Lab Chip; 2007 Jul; 7(7):890-7. PubMed ID: 17594009 [TBL] [Abstract][Full Text] [Related]
7. Electrochromatographic separation on a poly(dimethylsiloxane)/glass chip by integration of a capillary containing an acrylate monolithic stationary phase. Blas M; Delaunay N; Rocca JL J Sep Sci; 2007 Nov; 30(17):3043-9. PubMed ID: 17924367 [TBL] [Abstract][Full Text] [Related]
8. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Lewpiriyawong N; Yang C; Lam YC Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920 [TBL] [Abstract][Full Text] [Related]
9. Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device. Zeng HL; Li H; Wang X; Lin JM J Capill Electrophor Microchip Technol; 2007; 10(1-2):19-24. PubMed ID: 17685238 [TBL] [Abstract][Full Text] [Related]
10. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Wu H; Huang B; Zare RN Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971 [TBL] [Abstract][Full Text] [Related]
11. Patterning reactive microdomains inside polydimethylsiloxane microchannels by trapping and melting functional polymer particles. Yamamoto M; Yamada M; Nonaka N; Fukushima S; Yasuda M; Seki M J Am Chem Soc; 2008 Oct; 130(43):14044-5. PubMed ID: 18834115 [TBL] [Abstract][Full Text] [Related]
12. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. VanDelinder V; Groisman A Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639 [TBL] [Abstract][Full Text] [Related]
13. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960 [No Abstract] [Full Text] [Related]
14. Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications. Mosadegh B; Agarwal M; Torisawa YS; Takayama S Lab Chip; 2010 Aug; 10(15):1983-6. PubMed ID: 20502832 [TBL] [Abstract][Full Text] [Related]
16. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. Kelly RT; Pan T; Woolley AT Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386 [TBL] [Abstract][Full Text] [Related]
17. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications. Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032 [TBL] [Abstract][Full Text] [Related]
18. Novel dome-shaped structures for high-efficiency patterning of individual microbeads in a microfluidic device. Lim CT; Zhang Y Small; 2007 Apr; 3(4):573-9. PubMed ID: 17351990 [No Abstract] [Full Text] [Related]
19. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels. Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894 [TBL] [Abstract][Full Text] [Related]