BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18432343)

  • 1. Micropallet arrays with poly(ethylene glycol) walls.
    Wang Y; Salazar GT; Pai JH; Shadpour H; Sims CE; Allbritton NL
    Lab Chip; 2008 May; 8(5):734-40. PubMed ID: 18432343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large area magnetic micropallet arrays for cell colony sorting.
    Cox-Muranami WA; Nelson EL; Li GP; Bachman M
    Lab Chip; 2016 Jan; 16(1):172-81. PubMed ID: 26606460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropallet arrays for the separation of single, adherent cells.
    Salazar GT; Wang Y; Young G; Bachman M; Sims CE; Li GP; Allbritton NL
    Anal Chem; 2007 Jan; 79(2):682-7. PubMed ID: 17222037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the laser-based release of micropallets from arrays.
    Salazar GT; Wang Y; Sims CE; Bachman M; Li GP; Allbritton NL
    J Biomed Opt; 2008; 13(3):034007. PubMed ID: 18601552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes.
    Revzin A; Sekine K; Sin A; Tompkins RG; Toner M
    Lab Chip; 2005 Jan; 5(1):30-7. PubMed ID: 15616737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-based directed release of array elements for efficient collection into targeted microwells.
    Dobes NC; Dhopeshwarkar R; Henley WH; Ramsey JM; Sims CE; Allbritton NL
    Analyst; 2013 Feb; 138(3):831-8. PubMed ID: 23223411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors.
    Shadpour H; Zawistowski JS; Herman A; Hahn K; Allbritton NL
    Anal Chim Acta; 2011 Jun; 696(1-2):101-7. PubMed ID: 21621038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive hydrogel substrates: probing leukocyte receptor-ligand interactions in parallel plate flow chamber studies.
    Taite LJ; Rowland ML; Ruffino KA; Smith BR; Lawrence MB; West JL
    Ann Biomed Eng; 2006 Nov; 34(11):1705-11. PubMed ID: 17031598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonfouling hydrophilic poly(ethylene glycol) engraftment strategy for PDMS/SU-8 heterogeneous microfluidic devices.
    Yeh PY; Zhang Z; Lin M; Cao X
    Langmuir; 2012 Nov; 28(46):16227-36. PubMed ID: 23110374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Surface Interactions between Single Cells and an OSTE+ Microwell Array for Enhanced Single Cell Manipulation.
    Breukers J; Horta S; Struyfs C; Spasic D; Feys HB; Geukens N; Thevissen K; Cammue BPA; Vanhoorelbeke K; Lammertyn J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2316-2326. PubMed ID: 33411502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadening cell selection criteria with micropallet arrays of adherent cells.
    Wang Y; Young G; Aoto PC; Pai JH; Bachman M; Li GP; Sims CE; Allbritton NL
    Cytometry A; 2007 Oct; 71(10):866-74. PubMed ID: 17559133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting cytokine release from single T-cells.
    Zhu H; Stybayeva G; Silangcruz J; Yan J; Ramanculov E; Dandekar S; George MD; Revzin A
    Anal Chem; 2009 Oct; 81(19):8150-6. PubMed ID: 19739655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arraying cell cultures using PEG-DMA micromolding in standard culture dishes.
    Marel AK; Rappl S; Piera Alberola A; Rädler JO
    Macromol Biosci; 2013 May; 13(5):595-602. PubMed ID: 23460347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell microarrays based on hydrogel microstructures for the application to cell-based biosensor.
    Koh WG
    Methods Mol Biol; 2011; 671():133-45. PubMed ID: 20967627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.
    Lee HJ; Kim DN; Park S; Lee Y; Koh WG
    Acta Biomater; 2011 Mar; 7(3):1281-9. PubMed ID: 21056702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic wettability of polyethylene glycol-modified poly(dimethylsiloxane) surfaces in an aqueous/organic two-phase system.
    Fukuyama M; Tokeshi M; Proskurnin MA; Hibara A
    Lab Chip; 2018 Jan; 18(2):356-361. PubMed ID: 29264613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial control over cell attachment by partial solvent entrapment of poly lysine in microfluidic channels.
    Baman NK; Schneider GB; Terry TL; Zaharias R; Salem AK
    Int J Nanomedicine; 2006; 1(2):213-7. PubMed ID: 17722538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations.
    Chu S; Maples MM; Bryant SJ
    Acta Biomater; 2020 Jun; 109():37-50. PubMed ID: 32268243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.