These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18432345)

  • 1. Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels.
    Manbachi A; Shrivastava S; Cioffi M; Chung BG; Moretti M; Demirci U; Yliperttula M; Khademhosseini A
    Lab Chip; 2008 May; 8(5):747-54. PubMed ID: 18432345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfabricated grooved substrates as platforms for bioartificial liver reactors.
    Park J; Berthiaume F; Toner M; Yarmush ML; Tilles AW
    Biotechnol Bioeng; 2005 Jun; 90(5):632-44. PubMed ID: 15834948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell docking in double grooves in a microfluidic channel.
    Khabiry M; Chung BG; Hancock MJ; Soundararajan HC; Du Y; Cropek D; Lee WG; Khademhosseini A
    Small; 2009 May; 5(10):1186-94. PubMed ID: 19242937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass transport and shear stress in a microchannel bioreactor: numerical simulation and dynamic similarity.
    Zeng Y; Lee TS; Yu P; Roy P; Low HT
    J Biomech Eng; 2006 Apr; 128(2):185-93. PubMed ID: 16524329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the effects of fluid shear forces on cellular responses to profiled surfaces in-vitro: a computational and experimental investigation.
    Brown A; Meenan BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5387-90. PubMed ID: 18003226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational and experimental study inside microfluidic systems: the role of shear stress and flow recirculation in cell docking.
    Cioffi M; Moretti M; Manbachi A; Chung BG; Khademhosseini A; Dubini G
    Biomed Microdevices; 2010 Aug; 12(4):619-26. PubMed ID: 20300857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External force-assisted cell positioning inside microfluidic devices.
    Rhee SW; Taylor AM; Cribbs DH; Cotman CW; Jeon NL
    Biomed Microdevices; 2007 Feb; 9(1):15-23. PubMed ID: 17091393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.
    Khademhosseini A; Yeh J; Eng G; Karp J; Kaji H; Borenstein J; Farokhzad OC; Langer R
    Lab Chip; 2005 Dec; 5(12):1380-6. PubMed ID: 16286969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro/Nanofluidic device for single-cell-based assay.
    Yun KS; Yoon E
    Biomed Microdevices; 2005 Mar; 7(1):35-40. PubMed ID: 15834518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic alignment of collagen fibers for in vitro cell culture.
    Lee P; Lin R; Moon J; Lee LP
    Biomed Microdevices; 2006 Mar; 8(1):35-41. PubMed ID: 16491329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates.
    Park J; Li Y; Berthiaume F; Toner M; Yarmush ML; Tilles AW
    Biotechnol Bioeng; 2008 Feb; 99(2):455-67. PubMed ID: 17626294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic device with groove patterns for studying cellular behavior.
    Chung BG; Manbachi A; Khademhosseini A
    J Vis Exp; 2007; (7):270. PubMed ID: 18989441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic manipulator for enrichment and alignment of moving cells and particles.
    Chen HH; Sun B; Tran KK; Shen H; Gao D
    J Biomech Eng; 2009 Jul; 131(7):074505. PubMed ID: 19640141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planar microfluidic chamber for generation of stable and steep chemoattractant gradients.
    Fok S; Domachuk P; Rosengarten G; Krause N; Braet F; Eggleton BJ; Soon LL
    Biophys J; 2008 Aug; 95(3):1523-30. PubMed ID: 18645198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic cell culture systems for drug research.
    Wu MH; Huang SB; Lee GB
    Lab Chip; 2010 Apr; 10(8):939-56. PubMed ID: 20358102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable alignment of three-dimensional cellular constructs in a microfluidic chip.
    Anene-Nzelu CG; Peh KY; Fraiszudeen A; Kuan YH; Ng SH; Toh YC; Leo HL; Yu H
    Lab Chip; 2013 Oct; 13(20):4124-33. PubMed ID: 23969512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a multiple-diameter branched network of microvascular channels with semi-circular cross-sections using xenon difluoride etching.
    Camp JP; Stokol T; Shuler ML
    Biomed Microdevices; 2008 Apr; 10(2):179-86. PubMed ID: 17891456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An apparatus for studying the response of cultured endothelial cells to stresses.
    Shen L; Qiao A; Ding H; Mo G; Xu G; Du Y; Li M; Chen Z; Zeng Y
    Australas Phys Eng Sci Med; 2006 Jun; 29(2):196-202. PubMed ID: 16845925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An easy to assemble microfluidic perfusion device with a magnetic clamp.
    Tkachenko E; Gutierrez E; Ginsberg MH; Groisman A
    Lab Chip; 2009 Apr; 9(8):1085-95. PubMed ID: 19350090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.