BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 18432348)

  • 1. Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange.
    Yamada M; Kobayashi J; Yamato M; Seki M; Okano T
    Lab Chip; 2008 May; 8(5):772-8. PubMed ID: 18432348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices.
    Yamada M; Kasim V; Nakashima M; Edahiro J; Seki M
    Biotechnol Bioeng; 2004 Nov; 88(4):489-94. PubMed ID: 15459911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange.
    Toyama K; Yamada M; Seki M
    Biomed Microdevices; 2012 Aug; 14(4):751-7. PubMed ID: 22544390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment.
    Nalayanda DD; Puleo CM; Fulton WB; Wang TH; Abdullah F
    Exp Lung Res; 2007 Aug; 33(6):321-35. PubMed ID: 17694441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic devices for size-dependent separation of liver cells.
    Yamada M; Kano K; Tsuda Y; Kobayashi J; Yamato M; Seki M; Okano T
    Biomed Microdevices; 2007 Oct; 9(5):637-45. PubMed ID: 17530413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.
    Hung PJ; Lee PJ; Sabounchi P; Lin R; Lee LP
    Biotechnol Bioeng; 2005 Jan; 89(1):1-8. PubMed ID: 15580587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a modular tissue construct in a microfluidic chip.
    Bruzewicz DA; McGuigan AP; Whitesides GM
    Lab Chip; 2008 May; 8(5):663-71. PubMed ID: 18432334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic arrays for logarithmically perfused embryonic stem cell culture.
    Kim L; Vahey MD; Lee HY; Voldman J
    Lab Chip; 2006 Mar; 6(3):394-406. PubMed ID: 16511623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models.
    Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T
    Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers.
    Estes MD; Do J; Ahn CH
    Biomed Microdevices; 2009 Apr; 11(2):509-15. PubMed ID: 19082734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DC-Dielectrophoretic separation of biological cells by size.
    Kang Y; Li D; Kalams SA; Eid JE
    Biomed Microdevices; 2008 Apr; 10(2):243-9. PubMed ID: 17899384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E; El Kirat K; Griscom L
    Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low O2 metabolism of HepG2 cells cultured at high density in a 3D microstructured scaffold.
    Provin C; Takano K; Yoshida T; Sakai Y; Fujii T; Shirakashi R
    Biomed Microdevices; 2009 Apr; 11(2):485-94. PubMed ID: 19082898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability.
    Kim C; Lee KS; Kim YE; Lee KJ; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 May; 9(9):1294-7. PubMed ID: 19370252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelatin based microfluidic devices for cell culture.
    Paguirigan A; Beebe DJ
    Lab Chip; 2006 Mar; 6(3):407-13. PubMed ID: 16511624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic stickers for cell- and tissue-based assays in microchannels.
    Morel M; Bartolo D; Galas JC; Dahan M; Studer V
    Lab Chip; 2009 Apr; 9(7):1011-3. PubMed ID: 19294316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion dependent cell behavior in microenvironments.
    Yu H; Meyvantsson I; Shkel IA; Beebe DJ
    Lab Chip; 2005 Oct; 5(10):1089-95. PubMed ID: 16175265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.