BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 18432984)

  • 1. Experimental autoimmune encephalomyelitis in the mouse.
    Miller SD; Karpus WJ
    Curr Protoc Immunol; 2007 May; Chapter 15():15.1.1-15.1.18. PubMed ID: 18432984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental autoimmune encephalomyelitis in the mouse.
    Miller SD; Karpus WJ; Davidson TS
    Curr Protoc Immunol; 2010 Feb; Chapter 15():15.1.1-15.1.20. PubMed ID: 20143314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental autoimmune encephalomyelitis in the rat.
    Swanborg RH; Stepaniak JA
    Curr Protoc Immunol; 2001 May; Chapter 15():15.2.1-15.2.14. PubMed ID: 18432734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Autoimmune Encephalomyelitis in the Mouse.
    Laaker C; Hsu M; Fabry Z; Miller SD; Karpus WJ
    Curr Protoc; 2021 Dec; 1(12):e300. PubMed ID: 34870897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active and passive experimental autoimmune encephalomyelitis in strain 129/J (H-2b) mice.
    Fritz RB; Zhao ML
    J Neurosci Res; 1996 Aug; 45(4):471-4. PubMed ID: 8872908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergy between encephalitogenic T cells and myelin basic protein-specific antibodies in the induction of experimental autoimmune encephalomyelitis.
    Myers KJ; Sprent J; Dougherty JP; Ron Y
    J Neuroimmunol; 1992 Nov; 41(1):1-8. PubMed ID: 1281165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental autoimmune encephalomyelitis.
    Rao P; Segal BM
    Methods Mol Med; 2004; 102():363-75. PubMed ID: 15286395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD4(+) T cells prevent spontaneous experimental autoimmune encephalomyelitis in anti-myelin basic protein T cell receptor transgenic mice.
    Van de Keere F; Tonegawa S
    J Exp Med; 1998 Nov; 188(10):1875-82. PubMed ID: 9815265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis.
    Vanderlugt CL; Neville KL; Nikcevich KM; Eagar TN; Bluestone JA; Miller SD
    J Immunol; 2000 Jan; 164(2):670-8. PubMed ID: 10623809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lewis Rat Model of Experimental Autoimmune Encephalomyelitis.
    Pitarokoili K; Ambrosius B; Gold R
    Curr Protoc Neurosci; 2017 Oct; 81():9.61.1-9.61.20. PubMed ID: 29058769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory CD4(+) T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis.
    Olivares-Villagómez D; Wang Y; Lafaille JJ
    J Exp Med; 1998 Nov; 188(10):1883-94. PubMed ID: 9815266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two discreet subsets of CD8 T cells modulate PLP(91-110) induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice.
    Mangalam AK; Luckey D; Giri S; Smart M; Pease LR; Rodriguez M; David CS
    J Autoimmun; 2012 Jun; 38(4):344-53. PubMed ID: 22459490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.
    Prinz J; Karacivi A; Stormanns ER; Recks MS; Kuerten S
    PLoS One; 2015; 10(12):e0144847. PubMed ID: 26658811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein.
    Elliott EA; McFarland HI; Nye SH; Cofiell R; Wilson TM; Wilkins JA; Squinto SP; Matis LA; Mueller JP
    J Clin Invest; 1996 Oct; 98(7):1602-12. PubMed ID: 8833909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional maturation of proteolipid protein(139-151)-specific Th1 cells in the central nervous system in experimental autoimmune encephalomyelitis.
    Mohindru M; Kang B; Kim BS
    J Neuroimmunol; 2004 Oct; 155(1-2):127-35. PubMed ID: 15342203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilar background genes control susceptibility to autoimmune disease in the context of different MHC haplotypes: NOD.H-2(s) congenic mice are relatively resistant to both experimental autoimmune encephalomyelitis and type I diabetes.
    Greve B; Reddy J; Waldner HP; Sobel RA; Kuchroo VK
    Eur J Immunol; 2004 Jul; 34(7):1828-38. PubMed ID: 15214031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis.
    Reddy J; Illes Z; Zhang X; Encinas J; Pyrdol J; Nicholson L; Sobel RA; Wucherpfennig KW; Kuchroo VK
    Proc Natl Acad Sci U S A; 2004 Oct; 101(43):15434-9. PubMed ID: 15492218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental autoimmune encephalomyelitis in the rat.
    Mannie M; Swanborg RH; Stepaniak JA
    Curr Protoc Immunol; 2009 Apr; Chapter 15():15.2.1-15.2.15. PubMed ID: 19347844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LF 15-0195 treatment protects against central nervous system autoimmunity by favoring the development of Foxp3-expressing regulatory CD4 T cells.
    Duplan V; Beriou G; Heslan JM; Bruand C; Dutartre P; Mars LT; Liblau RS; Cuturi MC; Saoudi A
    J Immunol; 2006 Jan; 176(2):839-47. PubMed ID: 16393967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein.
    McRae BL; Kennedy MK; Tan LJ; Dal Canto MC; Picha KS; Miller SD
    J Neuroimmunol; 1992 Jun; 38(3):229-40. PubMed ID: 1376328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.