BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 18433137)

  • 1. Effect of dephytinization and follow-on formula addition on in vitro iron, calcium, and zinc availability from infant cereals.
    Frontela C; Haro JF; Ros G; Martínez C
    J Agric Food Chem; 2008 May; 56(10):3805-11. PubMed ID: 18433137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of components of infant formulas on in vitro iron, zinc, and calcium availability.
    Drago SR; Valencia ME
    J Agric Food Chem; 2004 May; 52(10):3202-7. PubMed ID: 15137876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability.
    Sanz-Penella JM; Frontela C; Ros G; Martinez C; Monedero V; Haros M
    J Agric Food Chem; 2012 Nov; 60(47):11787-92. PubMed ID: 23151205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do thickening properties of locust bean gum affect the amount of calcium, iron and zinc available for absorption from infant formula? In vitro studies.
    Bosscher D; Van Caillie-Bertrand M; Deelstra H
    Int J Food Sci Nutr; 2003 Jul; 54(4):261-8. PubMed ID: 12850887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin, and fiber contents.
    Lestienne I; Besançon P; Caporiccio B; Lullien-Péllerin V; Tréche S
    J Agric Food Chem; 2005 Apr; 53(8):3240-7. PubMed ID: 15826084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.
    Liang J; Han BZ; Nout MJ; Hamer RJ
    Int J Food Sci Nutr; 2010 Feb; 61(1):40-51. PubMed ID: 19919509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model.
    Frontela C; Scarino ML; Ferruzza S; Ros G; Martínez C
    World J Gastroenterol; 2009 Apr; 15(16):1977-84. PubMed ID: 19399930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccessibility of calcium, iron and zinc from three legume samples.
    Sahuquillo A; Barberá R; Farré R
    Nahrung; 2003 Dec; 47(6):438-41. PubMed ID: 14727775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability of calcium from milk-based formulas and fruit juices containing milk and cereals estimated by in vitro methods (solubility, dialyzability, and uptake and transport by caco-2 cells).
    Perales S; Barberá R; Lagarda MJ; Farré R
    J Agric Food Chem; 2005 May; 53(9):3721-6. PubMed ID: 15853426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains.
    Hemalatha S; Platel K; Srinivasan K
    Eur J Clin Nutr; 2007 Mar; 61(3):342-8. PubMed ID: 16969377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of exogenous iron, calcium, protein and common salt on the bioaccessibility of zinc from cereals and legumes.
    Hemalatha S; Gautam S; Platel K; Srinivasan K
    J Trace Elem Med Biol; 2009; 23(2):75-83. PubMed ID: 19398054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fortification of milk with calcium: effect on calcium bioavailability and interactions with iron and zinc.
    Perales S; Barberá R; Lagarda MJ; Farré R
    J Agric Food Chem; 2006 Jun; 54(13):4901-6. PubMed ID: 16787046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the simultaneous effects of processing parameters on the iron and zinc solubility of infant sorghum porridge by response surface methodology.
    Kayodé AP; Nout MJ; Bakker EJ; Van Boekel MA
    J Agric Food Chem; 2006 Jun; 54(12):4253-9. PubMed ID: 16756354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro availability of calcium, iron, and zinc from first-age infant formulae and human milk.
    Bosscher D; Van Caillie-Bertrand M; Robberecht H; Van Dyck K; Van Cauwenbergh R; Deelstra H
    J Pediatr Gastroenterol Nutr; 2001 Jan; 32(1):54-8. PubMed ID: 11176326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of food acidulants on bioaccessibility of zinc and iron from selected food grains.
    Hemalatha S; Platel K; Srinivasan K
    Mol Nutr Food Res; 2005 Oct; 49(10):950-6. PubMed ID: 16189798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability in infants of iron from infant cereals: effect of dephytinization.
    Davidsson L; Galan P; Cherouvrier F; Kastenmayer P; Juillerat MA; Hercberg S; Hurrell RF
    Am J Clin Nutr; 1997 Apr; 65(4):916-20. PubMed ID: 9094872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS; Bailey KB; Gibbs M; Ferguson EL
    Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: a comparison study.
    Etcheverry P; Wallingford JC; Miller DD; Glahn RP
    J Dairy Sci; 2004 Nov; 87(11):3629-37. PubMed ID: 15483146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytic acid degradation as a means of improving iron absorption.
    Hurrell RF
    Int J Vitam Nutr Res; 2004 Nov; 74(6):445-52. PubMed ID: 15743020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption of calcium, zinc, and iron from breast milk by five- to seven-month-old infants.
    Abrams SA; Wen J; Stuff JE
    Pediatr Res; 1997 Mar; 41(3):384-90. PubMed ID: 9078540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.