These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 18433166)

  • 1. Temperature (over)compensation in an oscillatory surface reaction.
    Nagao R; Epstein IR; Gonzalez ER; Varela H
    J Phys Chem A; 2008 May; 112(20):4617-24. PubMed ID: 18433166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature effects on the oscillatory electro-oxidation of methanol on platinum.
    Carbonio EA; Nagao R; Gonzalez ER; Varela H
    Phys Chem Chem Phys; 2009 Jan; 11(4):665-70. PubMed ID: 19835088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex kinetics, high frequency oscillations and temperature compensation in the electro-oxidation of ethylene glycol on platinum.
    Sitta E; Nascimento MA; Varela H
    Phys Chem Chem Phys; 2010 Dec; 12(46):15195-206. PubMed ID: 20661518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculating activation energies for temperature compensation in circadian rhythms.
    Bodenstein C; Heiland I; Schuster S
    Phys Biol; 2011 Oct; 8(5):056007. PubMed ID: 21891835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence and temperature compensation of kinetics of chemical oscillations; Belousov-Zhabotinskii reaction, glycolysis and circadian rhythms.
    Sen S; Riaz SS; Ray DS
    J Theor Biol; 2008 Jan; 250(1):103-12. PubMed ID: 17920634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature compensation in the oscillatory bray reaction.
    Kovacs K; Hussami LL; Rabai G
    J Phys Chem A; 2005 Nov; 109(45):10302-6. PubMed ID: 16833325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator.
    Zülke AA; Varela H
    Sci Rep; 2016 Apr; 6():24553. PubMed ID: 27079514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory behaviour in galvanostatic formaldehyde oxidation on nanostructured Pt/glassy carbon model electrodes.
    Seidel YE; Jusys Z; Lindström RW; Stenfeldt M; Kasemo B; Krischer K
    Chemphyschem; 2010 May; 11(7):1405-15. PubMed ID: 20408159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-induced route to chaos in the H2O2-HSO3(-)-S2O3(2-) flow reaction system.
    Rábai G; Szántó TG; Kovács K
    J Phys Chem A; 2008 Nov; 112(47):12007-10. PubMed ID: 18983129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of reaction temperature on the oscillatory behaviour in the palladium-catalysed phenylacetylene oxidative carbonylation reaction.
    Novakovic K; Mukherjee A; Willis M; Wright A; Scott S
    Phys Chem Chem Phys; 2009 Oct; 11(40):9044-9. PubMed ID: 19812824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures.
    Chen YX; Ye S; Heinen M; Jusys Z; Osawa M; Behm RJ
    J Phys Chem B; 2006 May; 110(19):9534-44. PubMed ID: 16686500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: a time-resolved surface-enhanced infrared study.
    Samjeské G; Miki A; Ye S; Yamakata A; Mukouyama Y; Okamoto H; Osawa M
    J Phys Chem B; 2005 Dec; 109(49):23509-16. PubMed ID: 16375325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From simple to complex oscillatory behavior in metabolic and genetic control networks.
    Goldbeter A; Gonze D; Houart G; Leloup JC; Halloy J; Dupont G
    Chaos; 2001 Mar; 11(1):247-260. PubMed ID: 12779458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic insights over a PEMFC operating on stationary and oscillatory states.
    Mota A; Gonzalez ER; Eiswirth M
    J Phys Chem A; 2011 Dec; 115(47):13773-82. PubMed ID: 22017227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time evolution of the activation energy in a batch chemical oscillator.
    Nogueira PA; Oliveira HC; Varela H
    J Phys Chem A; 2008 Dec; 112(48):12412-5. PubMed ID: 18998654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters.
    Allian AD; Takanabe K; Fujdala KL; Hao X; Truex TJ; Cai J; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Mar; 133(12):4498-517. PubMed ID: 21366255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependency and temperature compensation in a model of yeast glycolytic oscillations.
    Ruoff P; Christensen MK; Wolf J; Heinrich R
    Biophys Chem; 2003 Nov; 106(2):179-92. PubMed ID: 14556906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature compensation and entrainment in circadian rhythms.
    Bodenstein C; Heiland I; Schuster S
    Phys Biol; 2012 Jun; 9(3):036011. PubMed ID: 22683844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: I. Effects of pH and nitrogen levels.
    Chen CI; McDonald KA; Bisson L
    Biotechnol Bioeng; 1990 Jun; 36(1):19-27. PubMed ID: 18592605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.