These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 18433188)

  • 1. Turbo charging time-dependent density-functional theory with Lanczos chains.
    Rocca D; Gebauer R; Saad Y; Baroni S
    J Chem Phys; 2008 Apr; 128(15):154105. PubMed ID: 18433188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy.
    Walker B; Saitta AM; Gebauer R; Baroni S
    Phys Rev Lett; 2006 Mar; 96(11):113001. PubMed ID: 16605817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity.
    Jiang H; Engel E
    J Chem Phys; 2005 Dec; 123(22):224102. PubMed ID: 16375465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A density matrix-based quasienergy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets.
    Thorvaldsen AJ; Ruud K; Kristensen K; Jørgensen P; Coriani S
    J Chem Phys; 2008 Dec; 129(21):214108. PubMed ID: 19063545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full S matrix calculation via a single real-symmetric Lanczos recursion: the Lanczos artificial boundary inhomogeneity method.
    Zhang H; Smith SC
    J Chem Phys; 2004 Jan; 120(3):1161-3. PubMed ID: 15268237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing molecular excited states with Lanczos chains.
    Baroni S; Gebauer R; Bariş Malcioğlu O; Saad Y; Umari P; Xian J
    J Phys Condens Matter; 2010 Feb; 22(7):074204. PubMed ID: 21386382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels.
    Kussmann J; Ochsenfeld C
    J Chem Phys; 2007 Nov; 127(20):204103. PubMed ID: 18052415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasoft pseudopotentials in time-dependent density-functional theory.
    Walker B; Gebauer R
    J Chem Phys; 2007 Oct; 127(16):164106. PubMed ID: 17979318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational, V-representable, and variable-occupation-number perturbation theories.
    Dunlap BI
    J Chem Phys; 2008 Dec; 129(24):244109. PubMed ID: 19123497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation energies from spin-restricted ensemble-referenced Kohn-Sham method: a state-average approach.
    Kazaryan A; Heuver J; Filatov M
    J Phys Chem A; 2008 Dec; 112(50):12980-8. PubMed ID: 18616234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the maximum accuracy of the pseudopotential density functional method with localized atomic orbitals versus plane-wave basis sets.
    Gusso M
    J Chem Phys; 2008 Jan; 128(4):044102. PubMed ID: 18247925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of a density functional theory-based method for the calculation of the hyperfine A-tensor in periodic systems with the use of numerical and Slater type atomic orbitals: application to paramagnetic defects.
    Kadantsev ES; Ziegler T
    J Phys Chem A; 2008 May; 112(19):4521-6. PubMed ID: 18412322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between exchange-only optimized potential and Kohn-Sham methods with finite basis sets, and effect of linearly dependent products of orbital basis functions.
    Görling A; Hesselmann A; Jones M; Levy M
    J Chem Phys; 2008 Mar; 128(10):104104. PubMed ID: 18345874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plane wave/pseudopotential implementation of excited state gradients in density functional linear response theory: a new route via implicit differentiation.
    Doltsinis NL; Kosov DS
    J Chem Phys; 2005 Apr; 122(14):144101. PubMed ID: 15847510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lagrangian approach to molecular vibrational Raman intensities using time-dependent hybrid density functional theory.
    Rappoport D; Furche F
    J Chem Phys; 2007 May; 126(20):201104. PubMed ID: 17552747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method.
    Acevedo R; Lombardini R; Turner MA; Kinsey JL; Johnson BR
    J Chem Phys; 2008 Feb; 128(6):064103. PubMed ID: 18282024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling bulk and surface Pt using the "Gaussian and plane wave" density functional theory formalism: validation and comparison to k-point plane wave calculations.
    Santarossa G; Vargas A; Iannuzzi M; Pignedoli CA; Passerone D; Baiker A
    J Chem Phys; 2008 Dec; 129(23):234703. PubMed ID: 19102548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Krylov-space approach to the equilibrium and nonequilibrium single-particle Green's function.
    Balzer M; Gdaniec N; Potthoff M
    J Phys Condens Matter; 2012 Jan; 24(3):035603. PubMed ID: 22183787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of Verdet constants with time-dependent density functional theory: implementation and results for small molecules.
    Krykunov M; Banerjee A; Ziegler T; Autschbach J
    J Chem Phys; 2005 Feb; 122(7):074105. PubMed ID: 15743219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of nonadiabatic couplings with restricted open-shell Kohn-Sham density-functional theory.
    Billeter SR; Egli D
    J Chem Phys; 2006 Dec; 125(22):224103. PubMed ID: 17176130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.