These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Analysis of barrier scattering with real and complex quantum trajectories. Rowland BA; Wyatt RE J Phys Chem A; 2007 Oct; 111(41):10234-50. PubMed ID: 17645320 [TBL] [Abstract][Full Text] [Related]
5. Complex trajectories sans isochrones: quantum barrier scattering with rectilinear constant velocity trajectories. Rowland BA; Wyatt RE J Chem Phys; 2007 Oct; 127(16):164104. PubMed ID: 17979316 [TBL] [Abstract][Full Text] [Related]
6. Bohmian dynamics on subspaces using linearized quantum force. Rassolov VA; Garashchuk S J Chem Phys; 2004 Apr; 120(15):6815-25. PubMed ID: 15267580 [TBL] [Abstract][Full Text] [Related]
7. Computational method for the quantum Hamilton-Jacobi equation: one-dimensional scattering problems. Chou CC; Wyatt RE Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066702. PubMed ID: 17280172 [TBL] [Abstract][Full Text] [Related]
8. Quantum vortices within the complex quantum Hamilton-Jacobi formalism. Chou CC; Wyatt RE J Chem Phys; 2008 Jun; 128(23):234106. PubMed ID: 18570490 [TBL] [Abstract][Full Text] [Related]
9. Computational method for the quantum Hamilton-Jacobi equation: bound states in one dimension. Chou CC; Wyatt RE J Chem Phys; 2006 Nov; 125(17):174103. PubMed ID: 17100425 [TBL] [Abstract][Full Text] [Related]
10. Computational Investigation of Wave Packet Scattering in the Complex Plane: Dynamics of Exact Quantum Trajectories. Wyatt RE; Rowland BA J Chem Theory Comput; 2009 Mar; 5(3):452-8. PubMed ID: 26610213 [TBL] [Abstract][Full Text] [Related]
11. Trajectory approach to dissipative quantum phase space dynamics: Application to barrier scattering. Hughes KH; Wyatt RE J Chem Phys; 2004 Mar; 120(9):4089-97. PubMed ID: 15268575 [TBL] [Abstract][Full Text] [Related]
12. Stabilization of quantum energy flows within the approximate quantum trajectory approach. Garashchuk S; Rassolov V J Phys Chem A; 2007 Oct; 111(41):10251-5. PubMed ID: 17676720 [TBL] [Abstract][Full Text] [Related]
13. Reconciling semiclassical and Bohmian mechanics. II. Scattering states for discontinuous potentials. Trahan C; Poirier B J Chem Phys; 2006 Jan; 124(3):034115. PubMed ID: 16438575 [TBL] [Abstract][Full Text] [Related]
14. Energy conserving approximations to the quantum potential: dynamics with linearized quantum force. Garashchuk S; Rassolov VA J Chem Phys; 2004 Jan; 120(3):1181-90. PubMed ID: 15268241 [TBL] [Abstract][Full Text] [Related]
15. Multidimensional quantum trajectories: applications of the derivative propagation method. Trahan CJ; Wyatt RE; Poirier B J Chem Phys; 2005 Apr; 122(16):164104. PubMed ID: 15945669 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics with time dependent quantum Monte Carlo. Christov IP J Chem Phys; 2008 Dec; 129(21):214107. PubMed ID: 19063544 [TBL] [Abstract][Full Text] [Related]
17. Real time correlation function in a single phase space integral beyond the linearized semiclassical initial value representation. Liu J; Miller WH J Chem Phys; 2007 Jun; 126(23):234110. PubMed ID: 17600407 [TBL] [Abstract][Full Text] [Related]
18. Quantum trajectory dynamics in imaginary time with the momentum-dependent quantum potential. Garashchuk S J Chem Phys; 2010 Jan; 132(1):014112. PubMed ID: 20078154 [TBL] [Abstract][Full Text] [Related]
19. Reconciling semiclassical and Bohmian mechanics. III. Scattering states for continuous potentials. Trahan C; Poirier B J Chem Phys; 2006 Jan; 124(3):034116. PubMed ID: 16438576 [TBL] [Abstract][Full Text] [Related]