BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18433266)

  • 1. Infrared analysis of CO ice particles in the aerosol phase.
    Dartois E; Bauerecker S
    J Chem Phys; 2008 Apr; 128(15):154715. PubMed ID: 18433266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.
    Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Leisner T
    J Phys Chem A; 2007 Dec; 111(50):13003-22. PubMed ID: 18004822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube.
    Nájera JJ; Fochesatto JG; Last DJ; Percival CJ; Horn AB
    Rev Sci Instrum; 2008 Dec; 79(12):124102. PubMed ID: 19123581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FTIR study of CO2 and H2O/CO2 nanoparticles and their temporal evolution at 80 K.
    Taraschewski M; Cammenga HK; Tuckermann R; Bauerecker S
    J Phys Chem A; 2005 Apr; 109(15):3337-43. PubMed ID: 16833668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared optical constants of highly diluted sulfuric acid solution droplets at cirrus temperatures.
    Wagner R; Benz S; Bunz H; Möhler O; Saathoff H; Schnaiter M; Leisner T; Ebert V
    J Phys Chem A; 2008 Nov; 112(46):11661-76. PubMed ID: 18942812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared spectroscopy of acetic acid and formic acid aerosols: pure and compound acid/ice particles.
    Gadermann M; Vollmar D; Signorell R
    Phys Chem Chem Phys; 2007 Aug; 9(32):4535-44. PubMed ID: 17690779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size effects in the infrared spectra of NH3 ice nanoparticles studied by a combined molecular dynamics and vibrational exciton approach.
    Firanescu G; Luckhaus D; Signorell R
    J Chem Phys; 2006 Oct; 125(14):144501. PubMed ID: 17042603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase, shape, and architecture of SF6 and SF6/CO2 aerosol particles: infrared spectra and modeling of vibrational excitons.
    Firanescu G; Luckhaus D; Signorell R
    J Chem Phys; 2008 May; 128(18):184301. PubMed ID: 18532806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the influence of shape, size, and internal structure of CO aerosol particles on their infrared spectra.
    Firanescu G; Signorell R
    J Phys Chem B; 2009 May; 113(18):6366-77. PubMed ID: 19358536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic evidence for cyclical aggregation and coalescence of molecular aerosol particles.
    Devlin JP; Yinnon CA; Buch V
    Phys Chem Chem Phys; 2009 Sep; 11(36):7819-25. PubMed ID: 19727488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared spectroscopy and modeling of co-crystalline CO2·C2H2 aerosol particles. I. The formation and decomposition of co-crystalline CO2·C2H2 aerosol particles.
    Preston TC; Wang CC; Signorell R
    J Chem Phys; 2012 Mar; 136(9):094509. PubMed ID: 22401454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-infrared extinction spectra and optical constants of supercooled water droplets.
    Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Schurath U
    J Phys Chem A; 2005 Aug; 109(32):7099-112. PubMed ID: 16834073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational delocalization in ammonia aerosol particles.
    Jetzki M; Bonnamy A; Signorell R
    J Chem Phys; 2004 Jun; 120(24):11775-84. PubMed ID: 15268212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of a transition in the water-nanoparticle formation process at 167 K.
    Bauerecker S; Wargenau A; Schultze M; Kessler T; Tuckermann R; Reichardt J
    J Chem Phys; 2007 Apr; 126(13):134711. PubMed ID: 17430060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared spectra of C2H6, C2H4, C2H2, and CO2 aerosols potentially formed in Titan's atmosphere.
    Wang CC; Zielke P; Sigurbjörnsson OF; Viteri CR; Signorell R
    J Phys Chem A; 2009 Oct; 113(42):11129-37. PubMed ID: 19569662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared spectroscopy and modeling of co-crystalline CO2·C2H2 aerosol particles. II. The structure and shape of co-crystalline CO2·C2H2 aerosol particles.
    Preston TC; Signorell R
    J Chem Phys; 2012 Mar; 136(9):094510. PubMed ID: 22401455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a stabilized low temperature infrared absorption cell for use in low temperature and collisional cooling experiments.
    Valentin A; Henry A; Claveau C; Camy-Peyret C; Hurtmans D; Mantz AW
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Dec; 60(14):3477-82. PubMed ID: 15561634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface chemistry of aerosolized silicon nanoparticles: evolution and desorption of hydrogen from 6-nm diameter particles.
    Holm J; Roberts JT
    J Am Chem Soc; 2007 Mar; 129(9):2496-503. PubMed ID: 17284030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Midinfrared extinction spectra of submicron carbohydrate particles generated by a pneumatic atomizer.
    Matsuoka H; Sekiguchi S; Nishizawa K; Suzuki T
    J Phys Chem A; 2009 Apr; 113(16):4686-90. PubMed ID: 19290589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared optical constants of crystalline sodium chloride dihydrate: application to study the crystallization of aqueous sodium chloride solution droplets at low temperatures.
    Wagner R; Möhler O; Schnaiter M
    J Phys Chem A; 2012 Aug; 116(33):8557-71. PubMed ID: 22856335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.