BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18433620)

  • 1. Structural studies on flavodiiron proteins.
    Vicente JB; Carrondo MA; Teixeira M; Frazão C
    Methods Enzymol; 2008; 437():3-19. PubMed ID: 18433620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical, spectroscopic, and thermodynamic properties of flavodiiron proteins.
    Vicente JB; Justino MC; Gonçalves VL; Saraiva LM; Teixeira M
    Methods Enzymol; 2008; 437():21-45. PubMed ID: 18433621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity and complexity of flavodiiron NO/O2 reductases.
    Folgosa F; Martins MC; Teixeira M
    FEMS Microbiol Lett; 2018 Feb; 365(3):. PubMed ID: 29240952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the flavodiiron proteins in microbial nitric oxide detoxification.
    Saraiva LM; Vicente JB; Teixeira M
    Adv Microb Physiol; 2004; 49():77-129. PubMed ID: 15518829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional control of the binuclear metal site in the metallo-beta-lactamase-like fold by subtle amino acid replacements.
    Gomes CM; Frazão C; Xavier AV; Legall J; Teixeira M
    Protein Sci; 2002 Mar; 11(3):707-12. PubMed ID: 11847294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histidine ligand variants of a flavo-diiron protein: effects on structure and activities.
    Fang H; Caranto JD; Mendoza R; Taylor AB; Hart PJ; Kurtz DM
    J Biol Inorg Chem; 2012 Dec; 17(8):1231-9. PubMed ID: 22990880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of an unusual flavodoxin from the domain
    Prakash D; Iyer PR; Suharti S; Walters KA; Santiago-Martinez MG; Golbeck JH; Murakami KS; Ferry JG
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25917-25922. PubMed ID: 31801875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multidomain flavodiiron protein from Clostridium difficile 630 is an NADH:oxygen oxidoreductase.
    Folgosa F; Martins MC; Teixeira M
    Sci Rep; 2018 Jul; 8(1):10164. PubMed ID: 29977056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of a new flavodiiron core structural arrangement in Flv1-ΔFlR protein from Synechocystis sp. PCC6803.
    Borges PT; Romão CV; Saraiva LM; Gonçalves VL; Carrondo MA; Teixeira M; Frazão C
    J Struct Biol; 2019 Jan; 205(1):91-102. PubMed ID: 30447285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): regulation of oxidation-reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions.
    Swenson RP; Krey GD
    Biochemistry; 1994 Jul; 33(28):8505-14. PubMed ID: 8031784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray crystal structures of Moorella thermoacetica FprA. Novel diiron site structure and mechanistic insights into a scavenging nitric oxide reductase.
    Silaghi-Dumitrescu R; Kurtz DM; Ljungdahl LG; Lanzilotta WN
    Biochemistry; 2005 May; 44(17):6492-501. PubMed ID: 15850383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials.
    Hoover DM; Drennan CL; Metzger AL; Osborne C; Weber CH; Pattridge KA; Ludwig ML
    J Mol Biol; 1999 Dec; 294(3):725-43. PubMed ID: 10610792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of Escherichia coli Flavodiiron Nitric Oxide Reductase.
    Romão CV; Vicente JB; Borges PT; Victor BL; Lamosa P; Silva E; Pereira L; Bandeiras TM; Soares CM; Carrondo MA; Turner D; Teixeira M; Frazão C
    J Mol Biol; 2016 Nov; 428(23):4686-4707. PubMed ID: 27725182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The flavodiiron protein from Syntrophomonas wolfei has five domains and acts both as an NADH:O
    Martins MC; Alves CM; Teixeira M; Folgosa F
    FEBS J; 2024 Mar; 291(6):1275-1294. PubMed ID: 38129989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of oxidized flavodoxin from Anacystis nidulans.
    Smith WW; Pattridge KA; Ludwig ML; Petsko GA; Tsernoglou D; Tanaka M; Yasunobu KT
    J Mol Biol; 1983 Apr; 165(4):737-53. PubMed ID: 6406674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the electrostatic effect of the 5'-phosphate of the flavin mononucleotide cofactor on the oxidation--reduction potentials of the flavodoxin from desulfovibrio vulgaris (Hildenborough).
    Zhou Z; Swenson RP
    Biochemistry; 1996 Sep; 35(38):12443-54. PubMed ID: 8823179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tertiary structure of oxidized flavodoxin from an eukaryotic red alga Chondrus crispus at 2.35-A resolution. Localization of charged residues and implication for interaction with electron transfer partners.
    Fukuyama K; Wakabayashi S; Matsubara H; Rogers LJ
    J Biol Chem; 1990 Sep; 265(26):15804-12. PubMed ID: 2394748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cofactor-induced reversible folding of Flavodoxin-4 from Lactobacillus acidophilus.
    Dutta SK; Serrano P; Geralt M; Axelrod HL; Xu Q; Lesley SA; Godzik A; Deacon AM; Elsliger MA; Wilson IA; Wüthrich K
    Protein Sci; 2015 Oct; 24(10):1600-8. PubMed ID: 26177955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cumulative electrostatic effect of aromatic stacking interactions and the negative electrostatic environment of the flavin mononucleotide binding site is a major determinant of the reduction potential for the flavodoxin from Desulfovibrio vulgaris [Hildenborough].
    Zhou Z; Swenson RP
    Biochemistry; 1996 Dec; 35(50):15980-8. PubMed ID: 8973168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray crystal structure of the Desulfovibrio vulgaris (Hildenborough) apoflavodoxin-riboflavin complex.
    Walsh MA; McCarthy A; O'Farrell PA; McArdle P; Cunningham PD; Mayhew SG; Higgins TM
    Eur J Biochem; 1998 Dec; 258(2):362-71. PubMed ID: 9874201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.