These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18433647)

  • 121. [Nitric oxide production in plants].
    Małolepsza U
    Postepy Biochem; 2007; 53(3):263-71. PubMed ID: 18399354
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Imaging of reactive oxygen species and nitric oxide in vivo in plant tissues.
    Sandalio LM; Rodríguez-Serrano M; Romero-Puertas MC; Del Río LA
    Methods Enzymol; 2008; 440():397-409. PubMed ID: 18423232
    [TBL] [Abstract][Full Text] [Related]  

  • 123. S-Nitrosothiols: cellular formation and transport.
    Zhang Y; Hogg N
    Free Radic Biol Med; 2005 Apr; 38(7):831-8. PubMed ID: 15749378
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Identification of S-nitrosylated proteins in plants.
    Sell S; Lindermayr C; Durner J
    Methods Enzymol; 2008; 440():283-93. PubMed ID: 18423225
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Peroxisomes as cell generators of reactive nitrogen species (RNS) signal molecules.
    Corpas FJ; Barroso JB; Palma JM; del Río LA
    Subcell Biochem; 2013; 69():283-98. PubMed ID: 23821154
    [TBL] [Abstract][Full Text] [Related]  

  • 126. Bioimaging techniques for subcellular localization of plant hemoglobins and measurement of hemoglobin-dependent nitric oxide scavenging in planta.
    Hebelstrup KH; Østergaard-Jensen E; Hill RD
    Methods Enzymol; 2008; 437():595-604. PubMed ID: 18433649
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Chemiluminescent detection of S-nitrosated proteins: comparison of tri-iodide, copper/CO/cysteine, and modified copper/cysteine methods.
    Basu S; Wang X; Gladwin MT; Kim-Shapiro DB
    Methods Enzymol; 2008; 440():137-56. PubMed ID: 18423215
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Methods for nitric oxide detection during plant-pathogen interactions.
    Vandelle E; Delledonne M
    Methods Enzymol; 2008; 437():575-94. PubMed ID: 18433648
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Nitric oxide evolution and perception.
    Neill S; Bright J; Desikan R; Hancock J; Harrison J; Wilson I
    J Exp Bot; 2008; 59(1):25-35. PubMed ID: 17975211
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence.
    MacArthur PH; Shiva S; Gladwin MT
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 851(1-2):93-105. PubMed ID: 17208057
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Detection assays for determination of mitochondrial nitric oxide synthase activity; advantages and limitations.
    Ghafourifar P; Parihar MS; Nazarewicz R; Zenebe WJ; Parihar A
    Methods Enzymol; 2008; 440():317-34. PubMed ID: 18423228
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase.
    Lindermayr C
    Free Radic Biol Med; 2018 Jul; 122():110-115. PubMed ID: 29203326
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Determination of S-nitrosothiols in biological and clinical samples using electron paramagnetic resonance spectrometry with spin trapping.
    Winyard PG; Knight IA; Shaw FL; Rocks SA; Davies CA; Eggleton P; Haigh R; Whiteman M; Benjamin N
    Methods Enzymol; 2008; 441():151-60. PubMed ID: 18554533
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies.
    Giustarini D; Milzani A; Dalle-Donne I; Rossi R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 851(1-2):124-39. PubMed ID: 17035104
    [TBL] [Abstract][Full Text] [Related]  

  • 135. The biochemistry and physiology of S-nitrosothiols.
    Hogg N
    Annu Rev Pharmacol Toxicol; 2002; 42():585-600. PubMed ID: 11807184
    [TBL] [Abstract][Full Text] [Related]  

  • 136. The physiology of S-nitrosothiols: carrier molecules for nitric oxide.
    Ng ES; Kubes P
    Can J Physiol Pharmacol; 2003 Aug; 81(8):759-64. PubMed ID: 12897804
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Nitric oxide synthesis and signalling in plants.
    Wilson ID; Neill SJ; Hancock JT
    Plant Cell Environ; 2008 May; 31(5):622-31. PubMed ID: 18034772
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Novel method for measuring S-nitrosothiols using hydrogen sulfide.
    Teng X; Scott Isbell T; Crawford JH; Bosworth CA; Giles GI; Koenitzer JR; Lancaster JR; Doeller JE; W Kraus D; P Patel R
    Methods Enzymol; 2008; 441():161-72. PubMed ID: 18554534
    [TBL] [Abstract][Full Text] [Related]  

  • 139. Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology.
    Palma JM; Corpas FJ; del Río LA
    Proteomics; 2009 May; 9(9):2301-12. PubMed ID: 19343723
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Using immunohistochemistry to study plant metabolism: the examples of its use in the localization of amino acids in plant tissues, and of phosphoenolpyruvate carboxykinase and its possible role in pH regulation.
    Walker RP; Chen ZH; Johnson KE; Famiani F; Tecsi L; Leegood RC
    J Exp Bot; 2001 Apr; 52(356):565-76. PubMed ID: 11373305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.