BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18433759)

  • 1. Modelling adaptative volumetric finite growth in patient-specific residually stressed arteries.
    Alastrué V; Martínez MA; Doblaré M
    J Biomech; 2008; 41(8):1773-81. PubMed ID: 18433759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the use of the "opening angle method" to enforce residual stresses in patient-specific arteries.
    Alastrué V; Peña E; Martínez MA; Doblaré M
    Ann Biomed Eng; 2007 Oct; 35(10):1821-37. PubMed ID: 17638082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A volumetric model for growth of arterial walls with arbitrary geometry and loads.
    Rodríguez J; Goicolea JM; Gabaldón F
    J Biomech; 2007; 40(5):961-71. PubMed ID: 16797020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A description of arterial wall mechanics using limiting chain extensibility constitutive models.
    Horgan CO; Saccomandi G
    Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fung's model of arterial wall enhanced with a failure description.
    Volokh KY
    Mol Cell Biomech; 2008 Sep; 5(3):207-16. PubMed ID: 18751529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization.
    Speirs DC; de Souza Neto EA; Perić D
    J Biomech; 2008 Aug; 41(12):2673-80. PubMed ID: 18674766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation.
    Khalil AS; Bouma BE; Kaazempur Mofrad MR
    Cardiovasc Eng; 2006 Sep; 6(3):93-102. PubMed ID: 16967325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A constrained mixture model for arterial adaptations to a sustained step change in blood flow.
    Humphrey JD; Rajagopal KR
    Biomech Model Mechanobiol; 2003 Nov; 2(2):109-26. PubMed ID: 14586812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling and convergence in arterial wall simulations using a parallel FETI solution strategy.
    Brands D; Klawonn A; Rheinbach O; Schröder J
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):569-83. PubMed ID: 18608341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries.
    Balzani D; Schröder J; Gross D
    Acta Biomater; 2006 Nov; 2(6):609-18. PubMed ID: 16945600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth, anisotropy, and residual stresses in arteries.
    Volokh KY; Lev Y
    Mech Chem Biosyst; 2005; 2(1):27-40. PubMed ID: 16708470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the compliance of a right coronary artery and its impact on wall shear stress.
    Zeng D; Boutsianis E; Ammann M; Boomsma K; Wildermuth S; Poulikakos D
    J Biomech Eng; 2008 Aug; 130(4):041014. PubMed ID: 18601456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling initial strain distribution in soft tissues with application to arteries.
    Olsson T; Stålhand J; Klarbring A
    Biomech Model Mechanobiol; 2006 Mar; 5(1):27-38. PubMed ID: 16331490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An object-oriented modelling framework for the arterial wall.
    Balaguera MI; Briceño JC; Glazier JA
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):135-42. PubMed ID: 19603305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fibre reorientation model for orthotropic multiplicative growth. Configurational driving stresses, kinematics-based reorientation, and algorithmic aspects.
    Menzel A
    Biomech Model Mechanobiol; 2007 Sep; 6(5):303-20. PubMed ID: 17149642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical hemodynamics: a tool for evaluating the effect of fluid dynamic forces on vascular biology in vivo.
    Friedman MH; Himburg HA; LaMack JA
    J Biomech Eng; 2006 Dec; 128(6):965-8. PubMed ID: 17154699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of arterial failure based on a microstructural bi-layer fiber-matrix model with softening.
    Volokh KY
    J Biomech; 2008; 41(2):447-53. PubMed ID: 17880984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-linear modelling of breast tissue.
    Whiteley JP; Gavaghan DJ; Chapman SJ; Brady JM
    Math Med Biol; 2007 Sep; 24(3):327-45. PubMed ID: 17890760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear elastic mechanics of mock arteries: empirical versus theoretically predicted pulsatile stent deflection.
    Rajesh R; Conti JC; Strope ER
    Biomed Sci Instrum; 2007; 43():54-62. PubMed ID: 17487057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.