These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 18433978)

  • 1. Influence of NaCl and sorbitol on the stability of conformations of cytochrome c.
    Bágel'ová J; Fedunová D; Gazová Z; Fabian M; Antalík M
    Biophys Chem; 2008 Jun; 135(1-3):110-5. PubMed ID: 18433978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversibility of structural transition of cytochrome c on interacting with and releasing from alternating copolymers of maleic Acid and alkene.
    Liang L; Yao P; Jiang M
    Biomacromolecules; 2006 Jun; 7(6):1829-35. PubMed ID: 16768404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the polyanion-induced molten globule-like state of cytochrome c.
    Sedlák E
    Biopolymers; 2007 Jun; 86(2):119-26. PubMed ID: 17330862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment.
    Santoni E; Scatragli S; Sinibaldi F; Fiorucci L; Santucci R; Smulevich G
    J Inorg Biochem; 2004 Jun; 98(6):1067-77. PubMed ID: 15149817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization of an equilibrium unfolding intermediate in cytochrome c.
    Latypov RF; Cheng H; Roder NA; Zhang J; Roder H
    J Mol Biol; 2006 Mar; 357(3):1009-25. PubMed ID: 16473367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rupture of the hydrogen bond linking two Omega-loops induces the molten globule state at neutral pH in cytochrome c.
    Sinibaldi F; Piro MC; Howes BD; Smulevich G; Ascoli F; Santucci R
    Biochemistry; 2003 Jun; 42(24):7604-10. PubMed ID: 12809517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy.
    Schweitzer-Stenner R
    J Phys Chem B; 2008 Aug; 112(33):10358-66. PubMed ID: 18665633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molten globule-like intermediate state detected in the thermal transition of cytochrome c under low salt concentration.
    Nakamura S; Baba T; Kidokoro S
    Biophys Chem; 2007 Apr; 127(1-2):103-12. PubMed ID: 17257735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stability of the cytochrome c scaffold as revealed by NMR spectroscopy.
    Berners-Price SJ; Bertini I; Gray HB; Spyroulias GA; Turano P
    J Inorg Biochem; 2004 May; 98(5):814-23. PubMed ID: 15134927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-induced formation of the A-state of ferricytochrome c--effect of the anion charge on protein structure.
    Sinibaldi F; Piro MC; Coletta M; Santucci R
    FEBS J; 2006 Dec; 273(23):5347-57. PubMed ID: 17059462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-native heme-histidine ligation promotes microsecond time scale secondary structure formation in reduced horse heart cytochrome c.
    Chen E; Abel CJ; Goldbeck RA; Kliger DS
    Biochemistry; 2007 Oct; 46(43):12463-72. PubMed ID: 17914866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt-induced oligomerization of partially folded intermediates of equinatoxin II.
    Ulrih NP; Anderluh G; Macek P; Chalikian TV
    Biochemistry; 2004 Jul; 43(29):9536-45. PubMed ID: 15260497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unique molten globule state occurs during unfolding of cytochrome c by LiClO4 near physiological pH and temperature: structural and thermodynamic characterization.
    Moza B; Qureshi SH; Islam A; Singh R; Anjum F; Moosavi-Movahedi AA; Ahmad F
    Biochemistry; 2006 Apr; 45(14):4695-702. PubMed ID: 16584204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational substates of ferricytochrome c revealed by combined optical absorption and electronic circular dichroism spectroscopy at cryogenic temperature.
    Spilotros A; Levantino M; Cupane A
    Biophys Chem; 2010 Mar; 147(1-2):8-12. PubMed ID: 20022687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes of horse heart ferricytochrome C induced by changes of ionic strength and anion binding.
    Shah R; Schweitzer-Stenner R
    Biochemistry; 2008 May; 47(18):5250-7. PubMed ID: 18407664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPR and optical spectroscopic studies of Met80X mutants of yeast ferricytochrome c. Models for intermediates in the alkaline transition.
    Silkstone GG; Cooper CE; Svistunenko D; Wilson MT
    J Am Chem Soc; 2005 Jan; 127(1):92-9. PubMed ID: 15631458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength.
    Sinibaldi F; Fiorucci L; Patriarca A; Lauceri R; Ferri T; Coletta M; Santucci R
    Biochemistry; 2008 Jul; 47(26):6928-35. PubMed ID: 18540683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical spectroscopic differentiation of various equilibrium denatured states of horse cytochrome c.
    Xu Q; Keiderling TA
    Biopolymers; 2004 Apr; 73(6):716-26. PubMed ID: 15048775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A solution study on the local and global structure changes of cytochrome c: an unfolding process induced by urea.
    Hsu IJ; Shiu YJ; Jeng US; Chen TH; Huang YS; Lai YH; Tsai LN; Jang LY; Lee JF; Lin LJ; Lin SH; Wang Y
    J Phys Chem A; 2007 Sep; 111(38):9286-90. PubMed ID: 17696324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.