These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 18434006)

  • 1. Enhanced abiotic reduction of Cr(VI) in a soil slurry system by natural biomaterial addition.
    Park D; Ahn CK; Kim YM; Yun YS; Park JM
    J Hazard Mater; 2008 Dec; 160(2-3):422-7. PubMed ID: 18434006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Cr(VI) from contaminated soil by electrokinetic remediation.
    Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K
    Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced kinetic model of the Cr(VI) removal by biomaterials at various pHs and temperatures.
    Park D; Yun YS; Lee HW; Park JM
    Bioresour Technol; 2008 Mar; 99(5):1141-7. PubMed ID: 17416519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a new Cr(VI)-biosorbent from agricultural biowaste.
    Park D; Lim SR; Yun YS; Park JM
    Bioresour Technol; 2008 Dec; 99(18):8810-8. PubMed ID: 18511265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium speciation in mildly heated Cr(VI)-doped latosol soil.
    Wei YL; Hsieh HF; Peng YS; Chen KW; Lin CY; Wang HP
    J Synchrotron Radiat; 2010 Mar; 17(2):173-8. PubMed ID: 20157268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium transport in an acidic waste contaminated subsurface medium: the role of reduction.
    Qafoku NP; Evan Dresel P; Ilton E; McKinley JP; Resch CT
    Chemosphere; 2010 Dec; 81(11):1492-500. PubMed ID: 20875666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron.
    Rivero-Huguet M; Marshall WD
    Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones.
    Brose DA; James BR
    Environ Sci Technol; 2010 Dec; 44(24):9438-44. PubMed ID: 21105643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark.
    Fiol N; Escudero C; Villaescusa I
    Bioresour Technol; 2008 Jul; 99(11):5030-6. PubMed ID: 17945493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III).
    K'Owino IO; Omole MA; Sadik OA
    J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag.
    Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y
    J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X; Dong D; Hua X; Dong S
    J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction.
    Park D; Lim SR; Yun YS; Park JM
    Chemosphere; 2007 Dec; 70(2):298-305. PubMed ID: 17644158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Column study of Cr(VI) removal by cationic hydrogel for in-situ remediation of contaminated groundwater and soil.
    Tang SC; Yin K; Lo IM
    J Contam Hydrol; 2011 Jul; 125(1-4):39-46. PubMed ID: 21601936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness and longevity of a green/food waste derived compost packed column to reduce Cr(VI) contamination in groundwater.
    Piau C; Aspray TJ
    J Hazard Mater; 2011 Feb; 186(2-3):1249-53. PubMed ID: 21195546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions.
    Jeyasingh J; Philip L
    J Hazard Mater; 2005 Feb; 118(1-3):113-20. PubMed ID: 15721535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremediation of Cr(VI) in contaminated soils.
    Krishna KR; Philip L
    J Hazard Mater; 2005 May; 121(1-3):109-17. PubMed ID: 15885411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2D crossed electric field for electrokinetic remediation of chromium contaminated soil.
    Zhang P; Jin C; Zhao Z; Tian G
    J Hazard Mater; 2010 May; 177(1-3):1126-33. PubMed ID: 20122801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.