These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 18434100)
1. Surface migration of Staphylococcus xylosus on low-agar media. Dordet-Frisoni E; Gaillard-Martinie B; Talon R; Leroy S Res Microbiol; 2008 May; 159(4):263-9. PubMed ID: 18434100 [TBL] [Abstract][Full Text] [Related]
2. Formation of biofilm by Staphylococcus xylosus. Planchon S; Gaillard-Martinie B; Dordet-Frisoni E; Bellon-Fontaine MN; Leroy S; Labadie J; Hébraud M; Talon R Int J Food Microbiol; 2006 May; 109(1-2):88-96. PubMed ID: 16503066 [TBL] [Abstract][Full Text] [Related]
3. Monitoring of staphylococcal starters in two French processing plants manufacturing dry fermented sausages. Corbiere Morot-Bizot S; Leroy S; Talon R J Appl Microbiol; 2007 Jan; 102(1):238-44. PubMed ID: 17184340 [TBL] [Abstract][Full Text] [Related]
4. Interaction in dual species biofilms between Staphylococcus xylosus and Staphylococcus aureus. Leroy S; Lebert I; Andant C; Talon R Int J Food Microbiol; 2020 Aug; 326():108653. PubMed ID: 32449679 [TBL] [Abstract][Full Text] [Related]
5. Surface properties and behaviour on abiotic surfaces of Staphylococcus carnosus, a genetically homogeneous species. Planchon S; Gaillard-Martinie B; Leroy S; Bellon-Fontaine MN; Fadda S; Talon R Food Microbiol; 2007 Feb; 24(1):44-51. PubMed ID: 16943093 [TBL] [Abstract][Full Text] [Related]
6. Genetic diversity and biofilm formation of Staphylococcus equorum isolated from naturally fermented sausages and their manufacturing environment. Leroy S; Lebert I; Chacornac JP; Chavant P; Bernardi T; Talon R Int J Food Microbiol; 2009 Aug; 134(1-2):46-51. PubMed ID: 19157614 [TBL] [Abstract][Full Text] [Related]
7. Compact growth of Staphylococcus haemolyticus in soft agar is not due to hydrophobic interaction between the cocci. Godó ZI; Magyar E; Andirkó I; Rozgonyi F Acta Microbiol Immunol Hung; 1997; 44(4):343-9. PubMed ID: 9554167 [TBL] [Abstract][Full Text] [Related]
8. Pervasiveness of Staphylococcus carnosus over Staphylococcus xylosus is affected by the level of acidification within a conventional meat starter culture set-up. Stavropoulou DA; De Maere H; Berardo A; Janssens B; Filippou P; De Vuyst L; De Smet S; Leroy F Int J Food Microbiol; 2018 Jun; 274():60-66. PubMed ID: 29550159 [TBL] [Abstract][Full Text] [Related]
9. Impact of cleaning and disinfection agents on biofilm structure and on microbial transfer to a solid model food. Midelet G; Carpentier B J Appl Microbiol; 2004; 97(2):262-70. PubMed ID: 15239692 [TBL] [Abstract][Full Text] [Related]
10. Genomic diversity in Staphylococcus xylosus. Dordet-Frisoni E; Dorchies G; De Araujo C; Talon R; Leroy S Appl Environ Microbiol; 2007 Nov; 73(22):7199-209. PubMed ID: 17890333 [TBL] [Abstract][Full Text] [Related]
11. Antibiotic resistance of coagulase-negative staphylococci associated with food and used in starter cultures. Resch M; Nagel V; Hertel C Int J Food Microbiol; 2008 Sep; 127(1-2):99-104. PubMed ID: 18625535 [TBL] [Abstract][Full Text] [Related]
12. Interactions between strains of Staphylococcus xylosus and Kocuria varians isolated from fermented meats. Tremonte P; Succi M; Reale A; Di Renzo T; Sorrentino E; Coppola R J Appl Microbiol; 2007 Sep; 103(3):743-51. PubMed ID: 17714408 [TBL] [Abstract][Full Text] [Related]
13. Digestion of extracellular DNA is required for giant colony formation of Staphylococcus aureus. Kaito C; Hirano T; Omae Y; Sekimizu K Microb Pathog; 2011 Sep; 51(3):142-8. PubMed ID: 21539906 [TBL] [Abstract][Full Text] [Related]
14. Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. Jain A; Agarwal A J Microbiol Methods; 2009 Jan; 76(1):88-92. PubMed ID: 18851996 [TBL] [Abstract][Full Text] [Related]
15. Biofilm formation of Bdellovibrio bacteriovorus host-independent derivatives. Medina AA; Kadouri DE Res Microbiol; 2009 Apr; 160(3):224-31. PubMed ID: 19223013 [TBL] [Abstract][Full Text] [Related]
16. Comparative subproteome analyses of planktonic and sessile Staphylococcus xylosus C2a: new insight in cell physiology of a coagulase-negative Staphylococcus in biofilm. Planchon S; Desvaux M; Chafsey I; Chambon C; Leroy S; Hébraud M; Talon R J Proteome Res; 2009 Apr; 8(4):1797-809. PubMed ID: 19253936 [TBL] [Abstract][Full Text] [Related]
17. Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr-type II strains. Melchior MB; van Osch MH; Graat RM; van Duijkeren E; Mevius DJ; Nielen M; Gaastra W; Fink-Gremmels J Vet Microbiol; 2009 May; 137(1-2):83-9. PubMed ID: 19150182 [TBL] [Abstract][Full Text] [Related]
19. Protease and esterase activity of staphylococci. Casaburi A; Villani F; Toldrá F; Sanz Y Int J Food Microbiol; 2006 Dec; 112(3):223-9. PubMed ID: 16782222 [TBL] [Abstract][Full Text] [Related]
20. Characterization and technological properties of Staphylococcus xylosus strains isolated from a Tunisian traditional salted meat. Essid I; Ben Ismail H; Bel Hadj Ahmed S; Ghedamsi R; Hassouna M Meat Sci; 2007 Oct; 77(2):204-12. PubMed ID: 22061592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]