BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 18434230)

  • 1. Validation of three-dimensional model-based tibio-femoral tracking during running.
    Anderst W; Zauel R; Bishop J; Demps E; Tashman S
    Med Eng Phys; 2009 Jan; 31(1):10-6. PubMed ID: 18434230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tibio-femoral joint contact in healthy and osteoarthritic knees during quasi-static squat: A bi-planar X-ray analysis.
    Zeighami A; Dumas R; Kanhonou M; Hagemeister N; Lavoie F; de Guise JA; Aissaoui R
    J Biomech; 2017 Feb; 53():178-184. PubMed ID: 28118977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a noninvasive technique to precisely measure in vivo three-dimensional cervical spine movement.
    Anderst WJ; Baillargeon E; Donaldson WF; Lee JY; Kang JD
    Spine (Phila Pa 1976); 2011 Mar; 36(6):E393-400. PubMed ID: 21372650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency.
    Tashman S; Anderst W
    J Biomech Eng; 2003 Apr; 125(2):238-45. PubMed ID: 12751286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment.
    Hoshino Y; Tashman S
    Knee Surg Sports Traumatol Arthrosc; 2012 Jul; 20(7):1268-75. PubMed ID: 22041716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics.
    Bey MJ; Zauel R; Brock SK; Tashman S
    J Biomech Eng; 2006 Aug; 128(4):604-9. PubMed ID: 16813452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of distal femur bony morphology on in vivo knee translational and rotational kinematics.
    Hoshino Y; Wang JH; Lorenz S; Fu FH; Tashman S
    Knee Surg Sports Traumatol Arthrosc; 2012 Jul; 20(7):1331-8. PubMed ID: 21909723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of a contour-based biplane fluoroscopy technique for tracking knee joint kinematics of different speeds.
    Giphart JE; Zirker CA; Myers CA; Pennington WW; LaPrade RF
    J Biomech; 2012 Nov; 45(16):2935-8. PubMed ID: 23021610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion.
    Li G; Van de Velde SK; Bingham JT
    J Biomech; 2008; 41(7):1616-22. PubMed ID: 18394629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of dynamic biplane radiography and three-dimensional model-based tracking for evaluation of dynamic thumb kinematics.
    Munsch MA; Como CJ; Gale TH; Fowler JR; Anderst WJ
    J Biomech; 2022 Sep; 142():111236. PubMed ID: 35944289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion of the femoral condyles in flexion and extension during a continuous lunge.
    Feng Y; Tsai TY; Li JS; Wang S; Hu H; Zhang C; Rubash HE; Li G
    J Orthop Res; 2015 Apr; 33(4):591-7. PubMed ID: 25641056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of knee kinematics with dynamic radiostereometry: Validation of an automated model-based method of analysis using bone models.
    Christensen R; Petersen ET; Jürgens-Lahnstein J; Rytter S; Lindgren L; De Raedt S; Brüel A; Stilling M
    J Orthop Res; 2021 Mar; 39(3):597-608. PubMed ID: 33030797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Rotational Laxity of the Knee Joint - In Vivo MRI Study].
    Němec K; Plajner M; Krásenský J; Landor I; Lesenský J; Pinskerová V
    Acta Chir Orthop Traumatol Cech; 2019; 86(4):249-255. PubMed ID: 31524585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy.
    Baka N; Kaptein BL; Giphart JE; Staring M; de Bruijne M; Lelieveldt BP; Valstar E
    J Biomech; 2014 Jan; 47(1):122-9. PubMed ID: 24207131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anterior Cruciate Ligament Reconstruction Affects Tibiofemoral Joint Congruency During Dynamic Functional Movement.
    Nagai K; Gale T; Irrgang JJ; Tashman S; Fu FH; Anderst W
    Am J Sports Med; 2018 Jun; 46(7):1566-1574. PubMed ID: 29613816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model-based tracking method for measuring 3D dynamic joint motion using an alternating biplane x-ray imaging system.
    Lin CC; Li JD; Lu TW; Kuo MY; Kuo CC; Hsu HC
    Med Phys; 2018 Jun; ():. PubMed ID: 29889983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane x-ray imaging.
    Gray HA; Guan S; Thomeer LT; Schache AG; de Steiger R; Pandy MG
    J Orthop Res; 2019 Mar; 37(3):615-630. PubMed ID: 30680795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematics of the knee joint in deep flexion: a radiographic assessment.
    Hefzy MS; Kelly BP; Cooke TD
    Med Eng Phys; 1998 Jun; 20(4):302-7. PubMed ID: 9728681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.