These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18435282)

  • 61. Antidiabetic activity of perylenequinonoid-rich extract from Shiraia bambusicola in KK-Ay mice with spontaneous type 2 diabetes mellitus.
    Huang M; Zhao P; Xiong M; Zhou Q; Zheng S; Ma X; Xu C; Yang J; Yang X; Zhang TC
    J Ethnopharmacol; 2016 Sep; 191():71-81. PubMed ID: 27286915
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift.
    Röckl KS; Hirshman MF; Brandauer J; Fujii N; Witters LA; Goodyear LJ
    Diabetes; 2007 Aug; 56(8):2062-9. PubMed ID: 17513699
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dehydrozingerone exerts beneficial metabolic effects in high-fat diet-induced obese mice via AMPK activation in skeletal muscle.
    Kim SJ; Kim HM; Lee ES; Kim N; Lee JO; Lee HJ; Park NY; Jo JY; Ham BY; Han SH; Park SH; Chung CH; Kim HS
    J Cell Mol Med; 2015 Mar; 19(3):620-9. PubMed ID: 25582026
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Altered content of AMP-activated protein kinase isoforms in skeletal muscle from spinal cord injured subjects.
    Kostovski E; Boon H; Hjeltnes N; Lundell LS; Ahlsén M; Chibalin AV; Krook A; Iversen PO; Widegren U
    Am J Physiol Endocrinol Metab; 2013 Nov; 305(9):E1071-80. PubMed ID: 24022865
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Exercise induces increased CLUT4 gene expression and protein content in diabetic rats].
    Wu Y; Yang X; Li Y
    Zhonghua Yi Xue Za Zhi; 2000 Mar; 80(3):172-4. PubMed ID: 11798751
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Exercise improves high-fat diet-induced metabolic disorder by promoting HDAC5 degradation through the ubiquitin-proteasome system in skeletal muscle.
    Huang S; Zheng X; Zhang X; Jin Z; Liu S; Fu L; Niu Y
    Appl Physiol Nutr Metab; 2022 Nov; 47(11):1062-1074. PubMed ID: 35998371
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and Regeneration.
    Thomson DM
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30314396
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Role of AMPK α in skeletal muscle glycometabolism regulation and adaptation in relation to sepsis.
    Zheng X; Xu M; Fang Q
    Biomed Res Int; 2014; 2014():390760. PubMed ID: 25097857
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Arginine Promotes Slow Myosin Heavy Chain Expression via Akirin2 and the AMP-Activated Protein Kinase Signaling Pathway in Porcine Skeletal Muscle Satellite Cells.
    Chen X; Guo Y; Jia G; Zhao H; Liu G; Huang Z
    J Agric Food Chem; 2018 May; 66(18):4734-4740. PubMed ID: 29685038
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Acetylation and deacetylation--novel factors in muscle wasting.
    Alamdari N; Aversa Z; Castillero E; Hasselgren PO
    Metabolism; 2013 Jan; 62(1):1-11. PubMed ID: 22626763
    [TBL] [Abstract][Full Text] [Related]  

  • 71. AMPKα2/HNF4A/BORIS/GLUT4 pathway promotes hepatocellular carcinoma cell invasion and metastasis in low glucose microenviroment.
    Huang Y; Xian L; Liu Z; Wei L; Qin L; Xiong Y; Hu L; Zhou S; Fu Q; Li B; Qin Y
    Biochem Pharmacol; 2022 Sep; 203():115198. PubMed ID: 35940258
    [TBL] [Abstract][Full Text] [Related]  

  • 72. AMPK and transcriptional regulation.
    McGee SL; Hargreaves M
    Front Biosci; 2008 Jan; 13():3022-33. PubMed ID: 17981775
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Exercise-induced histone modifications in human skeletal muscle.
    McGee SL; Fairlie E; Garnham AP; Hargreaves M
    J Physiol; 2009 Dec; 587(Pt 24):5951-8. PubMed ID: 19884317
    [TBL] [Abstract][Full Text] [Related]  

  • 74. AMPK Associates with Chromatin and Phosphorylates the TAF-1 Subunit of the Transcription Initiation Complex to Regulate Histone Gene Expression in ALL Cells.
    Sun G; Leclerc GJ; Chahar S; Barredo JC
    Mol Cancer Res; 2023 Dec; 21(12):1261-1273. PubMed ID: 37682252
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Role of Histone Deacetylases in Skeletal Muscle Physiology and Systemic Energy Homeostasis: Implications for Metabolic Diseases and Therapy.
    Tian H; Liu S; Ren J; Lee JKW; Wang R; Chen P
    Front Physiol; 2020; 11():949. PubMed ID: 32848876
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Cellular metabolite controls oxidative stress resistance.].
    Shimazu T
    Clin Calcium; 2018; 28(1):39-44. PubMed ID: 29279425
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Correction: Mechanisms Regulating GLUT4 Transcription in Skeletal Muscle Cells Are Highly Conserved across Vertebrates.
    Marín-Juez R; Diaz M; Morata J; Planas JV
    PLoS One; 2014; 9(1):. PubMed ID: 29294484
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Exercise, GLUT4, and skeletal muscle glucose uptake.
    Richter EA; Hargreaves M
    Physiol Rev; 2013 Jul; 93(3):993-1017. PubMed ID: 23899560
    [TBL] [Abstract][Full Text] [Related]  

  • 79. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol.
    Habegger KM; Hoffman NJ; Ridenour CM; Brozinick JT; Elmendorf JS
    Endocrinology; 2012 May; 153(5):2130-41. PubMed ID: 22434076
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle.
    Hunter RW; Treebak JT; Wojtaszewski JF; Sakamoto K
    Diabetes; 2011 Mar; 60(3):766-74. PubMed ID: 21282366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.