These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 18435571)

  • 41. Protein classification using ontology classification.
    Wolstencroft K; Lord P; Tabernero L; Brass A; Stevens R
    Bioinformatics; 2006 Jul; 22(14):e530-8. PubMed ID: 16873517
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection.
    Damoulas T; Girolami MA
    Bioinformatics; 2008 May; 24(10):1264-70. PubMed ID: 18378524
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficacy of different protein descriptors in predicting protein functional families.
    Ong SA; Lin HH; Chen YZ; Li ZR; Cao Z
    BMC Bioinformatics; 2007 Aug; 8():300. PubMed ID: 17705863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Machine learning can be used to distinguish protein families and generate new proteins belonging to those families.
    Jin C; Cukier RI
    J Chem Phys; 2019 Nov; 151(17):175102. PubMed ID: 31703505
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enumerating and ranking discrete motifs.
    Nevill-Manning CG; Sethi KS; Wu TD; Brutlag DL
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():202-9. PubMed ID: 9322037
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-organizing tree-growing network for the classification of protein sequences.
    Wang HC; Dopazo J; de la Fraga LG; Zhu YP; Carazo JM
    Protein Sci; 1998 Dec; 7(12):2613-22. PubMed ID: 9865956
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification.
    Borozan I; Watt S; Ferretti V
    Bioinformatics; 2015 May; 31(9):1396-404. PubMed ID: 25573913
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein family classification using sparse Markov transducers.
    Eskin E; Grundy WN; Singer Y
    Proc Int Conf Intell Syst Mol Biol; 2000; 8():134-45. PubMed ID: 10977074
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mathematical Basis of Predicting Dominant Function in Protein Sequences by a Generic HMM-ANN Algorithm.
    Kundu S
    Acta Biotheor; 2018 Jun; 66(2):135-148. PubMed ID: 29700659
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Probabilistic topic modeling for the analysis and classification of genomic sequences.
    La Rosa M; Fiannaca A; Rizzo R; Urso A
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S2. PubMed ID: 25916734
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mathematical basis of improved protein subfamily classification by a HMM-based sequence filter.
    Kundu S
    Math Biosci; 2017 Nov; 293():75-80. PubMed ID: 28916136
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bayesian protein family classifier.
    Qu K; McCue LA; Lawrence CE
    Proc Int Conf Intell Syst Mol Biol; 1998; 6():131-9. PubMed ID: 9783218
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An alignment-free method for classification of protein sequences.
    Deshmukh S; Khaitan S; Das D; Gupta M; Wangikar PP
    Protein Pept Lett; 2007; 14(7):647-57. PubMed ID: 17897089
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sequence-based classification using discriminatory motif feature selection.
    Xiong H; Capurso D; Sen S; Segal MR
    PLoS One; 2011; 6(11):e27382. PubMed ID: 22102890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Classification of protein sequences by means of irredundant patterns.
    Comin M; Verzotto D
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S16. PubMed ID: 20122187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automatic classification of protein sequences into structure/function groups via parallel cascade identification: a feasibility study.
    Korenberg MJ; David R; Hunter IW; Solomon JE
    Ann Biomed Eng; 2000 Jul; 28(7):803-11. PubMed ID: 11016417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combining text mining and sequence analysis to discover protein functional regions.
    Eskin E; Agichtein E
    Pac Symp Biocomput; 2004; ():288-99. PubMed ID: 14992511
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Finding of residues crucial for supersecondary structure formation.
    Kister AE; Gelfand I
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18996-9000. PubMed ID: 19855006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using substitution matrices to estimate probability distributions for biological sequences.
    Eskin E; Noble WS; Singer Y
    J Comput Biol; 2002; 9(6):775-91. PubMed ID: 12614546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discovering active motifs in sets of related protein sequences and using them for classification.
    Wang JT; Marr TG; Shasha D; Shapiro BA; Chirn GW
    Nucleic Acids Res; 1994 Jul; 22(14):2769-75. PubMed ID: 8052532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.