BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 1843569)

  • 1. Selection of lacZ operon fusions in genes of gluconate metabolism in E. coli. characterization of a gntT::lacZ fusion.
    Porco A; Istúriz T
    Acta Cient Venez; 1991; 42(5):270-5. PubMed ID: 1843569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of gntS in the control of GntI, the main system for gluconate metabolism in Escherichia coli.
    Istúriz T; Díaz-Benjumea R; Rodriguez N; Porco A
    J Basic Microbiol; 2001; 41(2):75-83. PubMed ID: 11441462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mutation affecting gluconate catabolism in Escherichia coli: the locus for the main high affinity transport.
    De Rekarte UD; Istúriz T
    Acta Cient Venez; 1994; 45(2):96-101. PubMed ID: 8731292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The subsidiary GntII system for gluconate metabolism in Escherichia coli: alternative induction of the gntV gene.
    Gómez KM; Rodríguez A; Rodriguez Y; Ramírez AH; Istúriz T
    Biol Res; 2011; 44(3):269-75. PubMed ID: 22688914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular genetic characterization of the Escherichia coli gntT gene of GntI, the main system for gluconate metabolism.
    Porco A; Peekhaus N; Bausch C; Tong S; Isturiz T; Conway T
    J Bacteriol; 1997 Mar; 179(5):1584-90. PubMed ID: 9045817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The gluconate high affinity transport of GntI in Escherichia coli involves a multicomponent complex system.
    Porco A; Alonso G; Istúriz T
    J Basic Microbiol; 1998; 38(5-6):395-404. PubMed ID: 9871335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and molecular genetic characterization of the Escherichia coli gntR, gntK, and gntU genes of GntI, the main system for gluconate metabolism.
    Tong S; Porco A; Isturiz T; Conway T
    J Bacteriol; 1996 Jun; 178(11):3260-9. PubMed ID: 8655507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli.
    Tsunedomi R; Izu H; Kawai T; Matsushita K; Ferenci T; Yamada M
    J Bacteriol; 2003 Mar; 185(6):1783-95. PubMed ID: 12618441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual control by regulators, GntH and GntR, of the GntII genes for gluconate metabolism in Escherichia coli.
    Tsunedomi R; Izu H; Kawai T; Yamada M
    J Mol Microbiol Biotechnol; 2003; 6(1):41-56. PubMed ID: 14593252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli.
    Izu H; Adachi O; Yamada M
    J Mol Biol; 1997 Apr; 267(4):778-93. PubMed ID: 9135111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of stationary phase-inducible genes in Escherichia coli.
    Weichart D; Lange R; Henneberg N; Hengge-Aronis R
    Mol Microbiol; 1993 Oct; 10(2):407-20. PubMed ID: 7934831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations affecting gluconate catabolism in Escherichia coli. Genetic mapping of the locus for the thermosensitive gluconokinase.
    Istúriz T; Palmero E; Vitelli-Flores J
    J Gen Microbiol; 1986 Nov; 132(11):3209-19. PubMed ID: 3040894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the gntT gene encoding a high-affinity gluconate permease in Escherichia coli.
    Izu H; Kawai T; Yamada Y; Aoshima H; Adachi O; Yamada M
    Gene; 1997 Oct; 199(1-2):203-10. PubMed ID: 9358057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activities of constitutive promoters in Escherichia coli.
    Liang S; Bipatnath M; Xu Y; Chen S; Dennis P; Ehrenberg M; Bremer H
    J Mol Biol; 1999 Sep; 292(1):19-37. PubMed ID: 10493854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolism of gluconate in Escherichia coli. The subsidiary system and the nature of the gntS gene.
    Istúriz T; Celaya J
    J Basic Microbiol; 1997; 37(2):105-14. PubMed ID: 9151423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Heterologous genes expression on Escherichia coli chromosome lac operon using Red recombination].
    Li S; Shi Q; Huang C; Zhou J
    Sheng Wu Gong Cheng Xue Bao; 2008 Apr; 24(4):576-80. PubMed ID: 18616165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome.
    Platt R; Drescher C; Park SK; Phillips GJ
    Plasmid; 2000 Jan; 43(1):12-23. PubMed ID: 10610816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction of the hybrid crp-lac operon and study of the role of CRP-cAMP complex in its regulation in Escherichia coli].
    Smirnov IuV; Lisenkov AF
    Genetika; 1986 Apr; 22(4):576-83. PubMed ID: 3089871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the Escherichia coli gntT and gntU genes and comparison of the products with their homologues.
    Yamada M; Kawai T; Izu H
    Biosci Biotechnol Biochem; 1996 Sep; 60(9):1548-50. PubMed ID: 8987614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L-idonic acid catabolism in Escherichia coli.
    Bausch C; Peekhaus N; Utz C; Blais T; Murray E; Lowary T; Conway T
    J Bacteriol; 1998 Jul; 180(14):3704-10. PubMed ID: 9658018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.