These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 18436313)

  • 41. Timing behavior in streptozotocin-induced diabetic rats.
    Orduña V; Hong E; Bouzas A
    Behav Brain Res; 2011 Oct; 224(1):189-94. PubMed ID: 21683739
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Age-series characteristics of locomotor activities in spontaneously hypertensive rats: a comparison with the Wistar-Kyoto strain.
    Hsieh YL; Yang CC
    Physiol Behav; 2008 Mar; 93(4-5):777-82. PubMed ID: 18155738
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic behavioural changes in the Spontaneously Hyperactive Rat: 2. Control by novelty.
    Williams J; Sagvolden G; Taylor E; Sagvolden T
    Behav Brain Res; 2009 Mar; 198(2):283-90. PubMed ID: 18824039
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterizing operant hyperactivity in the Spontaneously Hypertensive Rat.
    Hill JC; Herbst K; Sanabria F
    Behav Brain Funct; 2012 Jan; 8():5. PubMed ID: 22277367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cross-modal use of an internal clock.
    Roberts S
    J Exp Psychol Anim Behav Process; 1982 Jan; 8(1):2-22. PubMed ID: 7057141
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temporal generalization accounts for response resurgence in the peak procedure.
    Sanabria F; Killeen PR
    Behav Processes; 2007 Feb; 74(2):126-41. PubMed ID: 17141981
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid avoidance acquisition in Wistar-Kyoto rats.
    Servatius RJ; Jiao X; Beck KD; Pang KC; Minor TR
    Behav Brain Res; 2008 Oct; 192(2):191-7. PubMed ID: 18501974
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contextual determinants of temporal control: Behavioral contrast in a free-operant psychophysical procedure.
    da Silva SP; Lattal KA
    Behav Processes; 2006 Feb; 71(2-3):157-63. PubMed ID: 16364564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential effects of d-amphetamine on impulsive choice in spontaneously hypertensive and Wistar-Kyoto rats.
    Hand DJ; Fox AT; Reilly MP
    Behav Pharmacol; 2009 Sep; 20(5-6):549-53. PubMed ID: 19654504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low-intensity voluntary running lowers blood pressure with simultaneous improvement in endothelium-dependent vasodilatation and insulin sensitivity in aged spontaneously hypertensive rats.
    Sun MW; Qian FL; Wang J; Tao T; Guo J; Wang L; Lu AY; Chen H
    Hypertens Res; 2008 Mar; 31(3):543-52. PubMed ID: 18497475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heart rate and arterial pressure variability and baroreflex sensitivity in ovariectomized spontaneously hypertensive rats.
    Dias da Silva VJ; Miranda R; Oliveira L; Rodrigues Alves CH; Van Gils GH; Porta A; Montano N
    Life Sci; 2009 May; 84(21-22):719-24. PubMed ID: 19249314
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time sharing in rats: A peak-interval procedure with gaps and distracters.
    Buhusi CV; Meck WH
    Behav Processes; 2006 Feb; 71(2-3):107-15. PubMed ID: 16413701
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of inducible nitric oxide synthase in rostral ventrolateral medulla in blood pressure regulation in spontaneously hypertensive rats.
    Kimura Y; Hirooka Y; Kishi T; Ito K; Sagara Y; Sunagawa K
    Clin Exp Hypertens; 2009 May; 31(3):281-6. PubMed ID: 19387904
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for separate neural mechanisms for the timing of discrete and sustained responses.
    Gooch CM; Wiener M; Portugal GS; Matell MS
    Brain Res; 2007 Jul; 1156():139-51. PubMed ID: 17506998
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Methylphenidate improves spatial memory of spontaneously hypertensive rats: evidence in behavioral and ultrastructural changes.
    Tian Y; Wang Y; Deng Y; Maeda K
    Neurosci Lett; 2009 Sep; 461(2):106-9. PubMed ID: 19520146
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Very low frequency blood pressure variability is modulated by myogenic vascular function and is reduced in stroke-prone rats.
    Stauss HM; Petitto CE; Rotella DL; Wong BJ; Sheriff DD
    J Hypertens; 2008 Jun; 26(6):1127-37. PubMed ID: 18475150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced response from the caudal pressor area in spontaneously hypertensive rats.
    Yajima Y; Ito S; Komatsu K; Tsukamoto K; Matsumoto K; Hirayama A
    Brain Res; 2008 Aug; 1227():89-95. PubMed ID: 18602899
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Docosahexaenoic acid, but not eicosapentaenoic acid, lowers ambulatory blood pressure and shortens interval QT in spontaneously hypertensive rats in vivo.
    Rousseau-Ralliard D; Moreau D; Guilland JC; Raederstorff D; Grynberg A
    Prostaglandins Leukot Essent Fatty Acids; 2009; 80(5-6):269-77. PubMed ID: 19428232
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strain-dependent differences of restraint stress-induced hypertension in WKY and SHR.
    Grundt A; Grundt C; Gorbey S; Thomas MA; Lemmer B
    Physiol Behav; 2009 Jun; 97(3-4):341-6. PubMed ID: 19268675
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct and acute cardiotoxic effects of ultrafine air pollutants in spontaneously hypertensive rats and Wistar--Kyoto rats.
    Hwang H; Kloner RA; Kleinman MT; Simkhovich BZ
    J Cardiovasc Pharmacol Ther; 2008 Sep; 13(3):189-98. PubMed ID: 18635755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.