These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 18437693)

  • 1. Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups.
    Nyman JS; Roy A; Reyes MJ; Wang X
    J Biomed Mater Res A; 2009 May; 89(2):521-9. PubMed ID: 18437693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progressive post-yield behavior of human cortical bone in compression for middle-aged and elderly groups.
    Leng H; Dong XN; Wang X
    J Biomech; 2009 Mar; 42(4):491-7. PubMed ID: 19150716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading.
    Nyman JS; Leng H; Dong XN; Wang X
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):613-9. PubMed ID: 19716106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach to assess post-yield energy dissipation of bone in tension.
    Wang X; Nyman JS
    J Biomech; 2007; 40(3):674-7. PubMed ID: 16545820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related factors affecting the postyield energy dissipation of human cortical bone.
    Nyman JS; Roy A; Tyler JH; Acuna RL; Gayle HJ; Wang X
    J Orthop Res; 2007 May; 25(5):646-55. PubMed ID: 17266142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone.
    Leng H; Reyes MJ; Dong XN; Wang X
    Bone; 2013 Aug; 55(2):288-91. PubMed ID: 23598045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone.
    Katzenberger MJ; Albert DL; Agnew AM; Kemper AR
    J Mech Behav Biomed Mater; 2020 Feb; 102():103410. PubMed ID: 31655338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inelastic strain accumulation in cortical bone during rapid transient tensile loading.
    Fondrk MT; Bahniuk EH; Davy DT
    J Biomech Eng; 1999 Dec; 121(6):616-21. PubMed ID: 10633262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear behavior of trabecular bone at small strains.
    Morgan EF; Yeh OC; Chang WC; Keaveny TM
    J Biomech Eng; 2001 Feb; 123(1):1-9. PubMed ID: 11277293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.
    Bayraktar HH; Morgan EF; Niebur GL; Morris GE; Wong EK; Keaveny TM
    J Biomech; 2004 Jan; 37(1):27-35. PubMed ID: 14672565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.
    Yamada S; Tadano S; Fukuda S
    J Biomech; 2014 Nov; 47(14):3482-7. PubMed ID: 25267574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trabecular bone exhibits fully linear elastic behavior and yields at low strains.
    Keaveny TM; Guo XE; Wachtel EF; McMahon TA; Hayes WC
    J Biomech; 1994 Sep; 27(9):1127-36. PubMed ID: 7929462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation dependence of progressive post-yield behavior of human cortical bone in compression.
    Dong XN; Acuna RL; Luo Q; Wang X
    J Biomech; 2012 Nov; 45(16):2829-34. PubMed ID: 22995144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range.
    Carter DR; Caler WE; Spengler DM; Frankel VH
    Acta Orthop Scand; 1981 Oct; 52(5):481-90. PubMed ID: 7331784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.
    Zioupos P; Hansen U; Currey JD
    J Biomech; 2008 Oct; 41(14):2932-9. PubMed ID: 18786670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ability of quantitative ultrasound to predict the mechanical properties of trabecular bone under different strain rates.
    Han S; Medige J; Faran K; Feng Z; Ziv I
    Med Eng Phys; 1997 Dec; 19(8):742-7. PubMed ID: 9450259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.