These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 18437711)
1. Differential fine-tuning of cochlear implant material-cell interactions by femtosecond laser microstructuring. Reich U; Mueller PP; Fadeeva E; Chichkov BN; Stoever T; Fabian T; Lenarz T; Reuter G J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):146-53. PubMed ID: 18437711 [TBL] [Abstract][Full Text] [Related]
2. Directing neuronal cell growth on implant material surfaces by microstructuring. Reich U; Fadeeva E; Warnecke A; Paasche G; Müller P; Chichkov B; Stöver T; Lenarz T; Reuter G J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):940-7. PubMed ID: 22287482 [TBL] [Abstract][Full Text] [Related]
3. Interaction of spiral ganglion neuron processes with alloplastic materials in vitro(1). Brors D; Aletsee C; Schwager K; Mlynski R; Hansen S; Schäfers M; Ryan AF; Dazert S Hear Res; 2002 May; 167(1-2):110-21. PubMed ID: 12117535 [TBL] [Abstract][Full Text] [Related]
4. [Growth behavior of spiral ganglion explants on cochlear implant electrodes and their materials]. Hansen S; Mlynski R; Volkenstein S; Stark T; Schwaab M; Dazert S; Brors D HNO; 2009 Apr; 57(4):358-63. PubMed ID: 19247626 [TBL] [Abstract][Full Text] [Related]
5. Polymer Coatings of Cochlear Implant Electrode Surface - An Option for Improving Electrode-Nerve-Interface by Blocking Fibroblast Overgrowth. Hadler C; Aliuos P; Brandes G; Warnecke A; Bohlmann J; Dempwolf W; Menzel H; Lenarz T; Reuter G; Wissel K PLoS One; 2016; 11(7):e0157710. PubMed ID: 27391483 [TBL] [Abstract][Full Text] [Related]
6. A silicone fiber coating as approach for the reduction of fibroblast growth on implant electrodes. Dencker F; Dreyer L; Müller D; Zernetsch H; Paasche G; Sindelar R; Glasmacher B J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2574-2580. PubMed ID: 27701814 [TBL] [Abstract][Full Text] [Related]
7. Cochlear implant material effects on inflammatory cell function and foreign body response. Jensen MJ; Claussen AD; Higgins T; Vielman-Quevedo R; Mostaert B; Xu L; Kirk J; Hansen MR Hear Res; 2022 Dec; 426():108597. PubMed ID: 35963812 [TBL] [Abstract][Full Text] [Related]
8. Foreign Body Response to Silicone in Cochlear Implant Electrodes in the Human. O'Malley JT; Burgess BJ; Galler D; Nadol JB Otol Neurotol; 2017 Aug; 38(7):970-977. PubMed ID: 28538471 [TBL] [Abstract][Full Text] [Related]
9. A polydopamine peptide coating enables adipose-derived stem cell growth on the silicone surface of cochlear implant electrode arrays. Schendzielorz P; Rak K; Radeloff K; Völker J; Gehrke T; Scherzad A; Kleinsasser N; Hagen R; Radeloff A J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1431-1438. PubMed ID: 28639367 [TBL] [Abstract][Full Text] [Related]
10. An X-ray fluorescence microscopic analysis of the tissue surrounding the multi-channel cochlear implant electrode array. Spiers K; Cardamone T; Furness JB; Clark JC; Patrick JF; Clark GM Cochlear Implants Int; 2016 May; 17(3):129-31. PubMed ID: 27078517 [TBL] [Abstract][Full Text] [Related]
11. Development of a drug delivery device: using the femtosecond laser to modify cochlear implant electrodes. Stöver T; Paasche G; Lenarz T; Ripken T; Breitenfeld P; Lubatschowski H; Fabian T Cochlear Implants Int; 2007 Mar; 8(1):38-52. PubMed ID: 17479965 [TBL] [Abstract][Full Text] [Related]
12. In vitro impact of platinum nanoparticles on inner ear related cell culture models. Berger E; Brandes G; Reifenrath J; Lenarz T; Durisin M; Wissel K PLoS One; 2023; 18(4):e0284794. PubMed ID: 37093819 [TBL] [Abstract][Full Text] [Related]
13. Chronic electrical stimulation of the auditory nerve using high surface area (HiQ) platinum electrodes. Tykocinski M; Duan Y; Tabor B; Cowan RS Hear Res; 2001 Sep; 159(1-2):53-68. PubMed ID: 11520634 [TBL] [Abstract][Full Text] [Related]
14. Scaling limitations of laser-fabricated nerve electrode arrays. Henle C; Schuettler M; Ordonez JS; Stieglitz T Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4208-11. PubMed ID: 19163640 [TBL] [Abstract][Full Text] [Related]
15. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants. Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of fibroblast adhesion by covalently immobilized protein repellent polymer coatings studied by single cell force spectroscopy. Aliuos P; Sen A; Reich U; Dempwolf W; Warnecke A; Hadler C; Lenarz T; Menzel H; Reuter G J Biomed Mater Res A; 2014 Jan; 102(1):117-27. PubMed ID: 23596088 [TBL] [Abstract][Full Text] [Related]
17. Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode. Wilk M; Hessler R; Mugridge K; Jolly C; Fehr M; Lenarz T; Scheper V PLoS One; 2016; 11(2):e0147552. PubMed ID: 26840740 [TBL] [Abstract][Full Text] [Related]
18. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells. Burblies N; Schulze J; Schwarz HC; Kranz K; Motz D; Vogt C; Lenarz T; Warnecke A; Behrens P PLoS One; 2016; 11(7):e0158571. PubMed ID: 27385031 [TBL] [Abstract][Full Text] [Related]