BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 18438408)

  • 1. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing.
    Campbell PJ; Stephens PJ; Pleasance ED; O'Meara S; Li H; Santarius T; Stebbings LA; Leroy C; Edkins S; Hardy C; Teague JW; Menzies A; Goodhead I; Turner DJ; Clee CM; Quail MA; Cox A; Brown C; Durbin R; Hurles ME; Edwards PA; Bignell GR; Stratton MR; Futreal PA
    Nat Genet; 2008 Jun; 40(6):722-9. PubMed ID: 18438408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive long-span paired-end-tag mapping reveals characteristic patterns of structural variations in epithelial cancer genomes.
    Hillmer AM; Yao F; Inaki K; Lee WH; Ariyaratne PN; Teo AS; Woo XY; Zhang Z; Zhao H; Ukil L; Chen JP; Zhu F; So JB; Salto-Tellez M; Poh WT; Zawack KF; Nagarajan N; Gao S; Li G; Kumar V; Lim HP; Sia YY; Chan CS; Leong ST; Neo SC; Choi PS; Thoreau H; Tan PB; Shahab A; Ruan X; Bergh J; Hall P; Cacheux-Rataboul V; Wei CL; Yeoh KG; Sung WK; Bourque G; Liu ET; Ruan Y
    Genome Res; 2011 May; 21(5):665-75. PubMed ID: 21467267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution.
    Bignell GR; Santarius T; Pole JC; Butler AP; Perry J; Pleasance E; Greenman C; Menzies A; Taylor S; Edkins S; Campbell P; Quail M; Plumb B; Matthews L; McLay K; Edwards PA; Rogers J; Wooster R; Futreal PA; Stratton MR
    Genome Res; 2007 Sep; 17(9):1296-303. PubMed ID: 17675364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex landscapes of somatic rearrangement in human breast cancer genomes.
    Stephens PJ; McBride DJ; Lin ML; Varela I; Pleasance ED; Simpson JT; Stebbings LA; Leroy C; Edkins S; Mudie LJ; Greenman CD; Jia M; Latimer C; Teague JW; Lau KW; Burton J; Quail MA; Swerdlow H; Churcher C; Natrajan R; Sieuwerts AM; Martens JW; Silver DP; Langerød A; Russnes HE; Foekens JA; Reis-Filho JS; van 't Veer L; Richardson AL; Børresen-Dale AL; Campbell PJ; Futreal PA; Stratton MR
    Nature; 2009 Dec; 462(7276):1005-10. PubMed ID: 20033038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breakpoint analysis of balanced chromosome rearrangements by next-generation paired-end sequencing.
    Chen W; Ullmann R; Langnick C; Menzel C; Wotschofsky Z; Hu H; Döring A; Hu Y; Kang H; Tzschach A; Hoeltzenbein M; Neitzel H; Markus S; Wiedersberg E; Kistner G; van Ravenswaaij-Arts CM; Kleefstra T; Kalscheuer VM; Ropers HH
    Eur J Hum Genet; 2010 May; 18(5):539-43. PubMed ID: 19953122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition.
    Rodriguez-Martin B; Alvarez EG; Baez-Ortega A; Zamora J; Supek F; Demeulemeester J; Santamarina M; Ju YS; Temes J; Garcia-Souto D; Detering H; Li Y; Rodriguez-Castro J; Dueso-Barroso A; Bruzos AL; Dentro SC; Blanco MG; Contino G; Ardeljan D; Tojo M; Roberts ND; Zumalave S; Edwards PA; Weischenfeldt J; Puiggròs M; Chong Z; Chen K; Lee EA; Wala JA; Raine KM; Butler A; Waszak SM; Navarro FCP; Schumacher SE; Monlong J; Maura F; Bolli N; Bourque G; Gerstein M; Park PJ; Wedge DC; Beroukhim R; Torrents D; Korbel JO; Martincorena I; Fitzgerald RC; Van Loo P; Kazazian HH; Burns KH; ; Campbell PJ; Tubio JMC;
    Nat Genet; 2020 Mar; 52(3):306-319. PubMed ID: 32024998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis.
    Boeva V; Jouannet S; Daveau R; Combaret V; Pierre-Eugène C; Cazes A; Louis-Brennetot C; Schleiermacher G; Ferrand S; Pierron G; Lermine A; Rio Frio T; Raynal V; Vassal G; Barillot E; Delattre O; Janoueix-Lerosey I
    PLoS One; 2013; 8(8):e72182. PubMed ID: 23991058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital PCR of Genomic Rearrangements for Monitoring Circulating Tumour DNA.
    Do H; Cameron D; Molania R; Thapa B; Rivalland G; Mitchell PL; Murone C; John T; Papenfuss A; Dobrovic A
    Adv Exp Med Biol; 2016; 924():139-146. PubMed ID: 27753035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paired-end mapping reveals extensive structural variation in the human genome.
    Korbel JO; Urban AE; Affourtit JP; Godwin B; Grubert F; Simons JF; Kim PM; Palejev D; Carriero NJ; Du L; Taillon BE; Chen Z; Tanzer A; Saunders AC; Chi J; Yang F; Carter NP; Hurles ME; Weissman SM; Harkins TT; Gerstein MB; Egholm M; Snyder M
    Science; 2007 Oct; 318(5849):420-6. PubMed ID: 17901297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of paired-end sequencing strategies for detection of genome rearrangements in cancer.
    Bashir A; Volik S; Collins C; Bafna V; Raphael BJ
    PLoS Comput Biol; 2008 Apr; 4(4):e1000051. PubMed ID: 18404202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recurrent DNA inversion rearrangements in the human genome.
    Flores M; Morales L; Gonzaga-Jauregui C; Domínguez-Vidaña R; Zepeda C; Yañez O; Gutiérrez M; Lemus T; Valle D; Avila MC; Blanco D; Medina-Ruiz S; Meza K; Ayala E; García D; Bustos P; González V; Girard L; Tusie-Luna T; Dávila G; Palacios R
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6099-106. PubMed ID: 17389356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linked read sequencing resolves complex genomic rearrangements in gastric cancer metastases.
    Greer SU; Nadauld LD; Lau BT; Chen J; Wood-Bouwens C; Ford JM; Kuo CJ; Ji HP
    Genome Med; 2017 Jun; 9(1):57. PubMed ID: 28629429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next generation mapping reveals novel large genomic rearrangements in prostate cancer.
    Jaratlerdsiri W; Chan EKF; Petersen DC; Yang C; Croucher PI; Bornman MSR; Sheth P; Hayes VM
    Oncotarget; 2017 Apr; 8(14):23588-23602. PubMed ID: 28423598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction and identification of recurrent genomic rearrangements that generate chimeric chromosomes in
    Palacios-Flores K; Castillo A; Uribe C; García Sotelo J; Boege M; Dávila G; Flores M; Palacios R; Morales L
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8445-8450. PubMed ID: 30962378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline.
    Kloosterman WP; Guryev V; van Roosmalen M; Duran KJ; de Bruijn E; Bakker SC; Letteboer T; van Nesselrooij B; Hochstenbach R; Poot M; Cuppen E
    Hum Mol Genet; 2011 May; 20(10):1916-24. PubMed ID: 21349919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing cancer genomes from paired-end sequencing data.
    Oesper L; Ritz A; Aerni SJ; Drebin R; Raphael BJ
    BMC Bioinformatics; 2012 Apr; 13 Suppl 6(Suppl 6):S10. PubMed ID: 22537039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range massively parallel mate pair sequencing detects distinct mutations and similar patterns of structural mutability in two breast cancer cell lines.
    Hampton OA; Koriabine M; Miller CA; Coarfa C; Li J; Den Hollander P; Schoenherr C; Carbone L; Nefedov M; Ten Hallers BF; Lee AV; De Jong PJ; Milosavljevic A
    Cancer Genet; 2011 Aug; 204(8):447-57. PubMed ID: 21962895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MinION-based long-read sequencing and assembly extends the
    Tyson JR; O'Neil NJ; Jain M; Olsen HE; Hieter P; Snutch TP
    Genome Res; 2018 Feb; 28(2):266-274. PubMed ID: 29273626
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 31.