BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 18438430)

  • 1. Pim kinase-dependent inhibition of c-Myc degradation.
    Zhang Y; Wang Z; Li X; Magnuson NS
    Oncogene; 2008 Aug; 27(35):4809-19. PubMed ID: 18438430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E mu N- and E mu L-myc cooperate with E mu pim-1 to generate lymphoid tumors at high frequency in double-transgenic mice.
    Möröy T; Verbeek S; Ma A; Achacoso P; Berns A; Alt F
    Oncogene; 1991 Nov; 6(11):1941-8. PubMed ID: 1658705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis.
    Schmidt T; Karsunky H; Gau E; Zevnik B; Elsässer HP; Möröy T
    Oncogene; 1998 Nov; 17(20):2661-7. PubMed ID: 9840930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc finger protein GFI-1 cooperates with myc and pim-1 in T-cell lymphomagenesis by reducing the requirements for IL-2.
    Zörnig M; Schmidt T; Karsunky H; Grzeschiczek A; Möröy T
    Oncogene; 1996 Apr; 12(8):1789-801. PubMed ID: 8622900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels.
    Morishita D; Katayama R; Sekimizu K; Tsuruo T; Fujita N
    Cancer Res; 2008 Jul; 68(13):5076-85. PubMed ID: 18593906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic mice for Cre-inducible overexpression of the oncogenes c-MYC and Pim-1 in multiple tissues.
    Roh M; Kim J; Song C; Wills M; Abdulkadir SA
    Genesis; 2006 Oct; 44(10):447-53. PubMed ID: 17013838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The Pim family of protein kinases: structure, functions and roles in hematopoietic malignancies].
    Zhukova IuN; Alekseeva MG; Zakharevich NV; Shtil' AA; Danilenko VN
    Mol Biol (Mosk); 2011; 45(5):755-64. PubMed ID: 22393773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells.
    Zhang Y; Wang Z; Magnuson NS
    Mol Cancer Res; 2007 Sep; 5(9):909-22. PubMed ID: 17855660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pim-1 kinase phosphorylates and stabilizes RUNX3 and alters its subcellular localization.
    Kim HR; Oh BC; Choi JK; Bae SC
    J Cell Biochem; 2008 Nov; 105(4):1048-58. PubMed ID: 18767071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pim-2 transgene induces lymphoid tumors, exhibiting potent synergy with c-myc.
    Allen JD; Verhoeven E; Domen J; van der Valk M; Berns A
    Oncogene; 1997 Sep; 15(10):1133-41. PubMed ID: 9294606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. eIF4B phosphorylation by pim kinases plays a critical role in cellular transformation by Abl oncogenes.
    Yang J; Wang J; Chen K; Guo G; Xi R; Rothman PB; Whitten D; Zhang L; Huang S; Chen JL
    Cancer Res; 2013 Aug; 73(15):4898-908. PubMed ID: 23749639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a phenanthrene derivative as a potent anticancer drug with Pim kinase inhibitory activity.
    Wang YY; Taniguchi T; Baba T; Li YY; Ishibashi H; Mukaida N
    Cancer Sci; 2012 Jan; 103(1):107-15. PubMed ID: 21981263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lymphocyte transformation by Pim-2 is dependent on nuclear factor-kappaB activation.
    Hammerman PS; Fox CJ; Cinalli RM; Xu A; Wagner JD; Lindsten T; Thompson CB
    Cancer Res; 2004 Nov; 64(22):8341-8. PubMed ID: 15548703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pim1 and Myc reversibly transform murine precursor B lymphocytes but not mature B lymphocytes.
    Bouquet C; Melchers F
    Eur J Immunol; 2012 Feb; 42(2):522-32. PubMed ID: 22101984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The direct Myc target Pim3 cooperates with other Pim kinases in supporting viability of Myc-induced B-cell lymphomas.
    Forshell LP; Li Y; Forshell TZ; Rudelius M; Nilsson L; Keller U; Nilsson J
    Oncotarget; 2011 Jun; 2(6):448-60. PubMed ID: 21646687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65.
    Nihira K; Ando Y; Yamaguchi T; Kagami Y; Miki Y; Yoshida K
    Cell Death Differ; 2010 Apr; 17(4):689-98. PubMed ID: 19911008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of the pRb/E2F pathway and inhibition of apoptosis are major oncogenic events in liver constitutively expressing c-myc and transforming growth factor alpha.
    Santoni-Rugiu E; Jensen MR; Thorgeirsson SS
    Cancer Res; 1998 Jan; 58(1):123-34. PubMed ID: 9426068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs.
    Xie Y; Xu K; Dai B; Guo Z; Jiang T; Chen H; Qiu Y
    Oncogene; 2006 Jan; 25(1):70-8. PubMed ID: 16186805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C.
    Bachmann M; Kosan C; Xing PX; Montenarh M; Hoffmann I; Möröy T
    Int J Biochem Cell Biol; 2006 Mar; 38(3):430-43. PubMed ID: 16356754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic mice as a means to study synergism between oncogenes.
    Berns A; Breuer M; Verbeek S; van Lohuizen M
    Int J Cancer Suppl; 1989; 4():22-5. PubMed ID: 2681009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.