BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18438488)

  • 1. Can the night-time atmospheric oxidant NO*3 damage aromatic amino acids?
    Sigmund DC; Wille U
    Chem Commun (Camb); 2008 May; (18):2121-3. PubMed ID: 18438488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage of aromatic amino acids by the atmospheric free radical oxidant NO3˙ in the presence of NO2˙, N2O4, O3 and O2.
    Goeschen C; Wibowo N; White JM; Wille U
    Org Biomol Chem; 2011 May; 9(9):3380-5. PubMed ID: 21412525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and experimental investigations on the reactions of positively charged phenyl radicals with aromatic amino acids.
    Huang Y; Kenttämaa H
    J Am Chem Soc; 2005 Jun; 127(21):7952-60. PubMed ID: 15913386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative Damage of Biomolecules by the Environmental Pollutants NO
    Gamon LF; Wille U
    Acc Chem Res; 2016 Oct; 49(10):2136-2145. PubMed ID: 27668965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of cholesterol and O-protected derivatives by the environmental pollutant NO₂.
    Zalewski AN; Nathanael JG; White JM; Wille U
    Chem Commun (Camb); 2016 Mar; 52(21):4060-3. PubMed ID: 26892038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decarboxylative reduction of free aliphatic carboxylic acids by photogenerated cation radical.
    Yoshimi Y; Itou T; Hatanaka M
    Chem Commun (Camb); 2007 Dec; (48):5244-6. PubMed ID: 18060156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative damage of aromatic dipeptides by the environmental oxidants NO2˙ and O3.
    Gamon LF; White JM; Wille U
    Org Biomol Chem; 2014 Nov; 12(41):8280-7. PubMed ID: 25207524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of photoinduced electron transfer reactions of lappaconitine with aromatic amino acids. Time-resolved CIDNP study.
    Polyakov NE; Khan VK; Taraban MB; Leshina TV; Luzina OA; Salakhutdinov NF; Tolstikov GA
    Org Biomol Chem; 2005 Mar; 3(5):881-5. PubMed ID: 15731875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DMS photochemistry during the Asian dust-storm period in the Spring of 2001: model simulations vs. field observations.
    Shon ZH; Kim KH; Swan H; Lee G; Kim YK
    Chemosphere; 2005 Jan; 58(2):149-61. PubMed ID: 15571747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemistry of 1,3,2,4-benzodithiadiazines: formation and oxidation of 1,2,3-benzodithiazolyl radicals.
    Gritsan NP; Kim SN; Makarov AY; Chesnokov EN; Zibarev AV
    Photochem Photobiol Sci; 2006 Jan; 5(1):95-101. PubMed ID: 16395433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study on the attack of ·OH radicals on aromatic amino acids.
    Mujika JI; Uranga J; Matxain JM
    Chemistry; 2013 May; 19(21):6862-73. PubMed ID: 23536477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of aromatic amino acids via direct C-H activation: generation of versatile building blocks for accessing novel peptide space.
    Meyer FM; Liras S; Guzman-Perez A; Perreault C; Bian J; James K
    Org Lett; 2010 Sep; 12(17):3870-3. PubMed ID: 20695449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting peptides with an iron-based oxidant: cleavage of the amino acid backbone and oxidation of side chains.
    Ekkati AR; Kodanko JJ
    J Am Chem Soc; 2007 Oct; 129(41):12390-1. PubMed ID: 17894497
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantitative determination of singlet oxygen generated by excited state aromatic amino acids, proteins, and immunoglobulins.
    Chin KK; Trevithick-Sutton CC; McCallum J; Jockusch S; Turro NJ; Scaiano JC; Foote CS; Garcia-Garibay MA
    J Am Chem Soc; 2008 Jun; 130(22):6912-3. PubMed ID: 18459785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unprecedented ipso aromatic nucleophilic substitution upon oxidative decarboxylation of tris(p-carboxyltetrathiaaryl)methyl (TAM) radicals: a new access to diversely substituted TAM radicals.
    Decroos C; Prangé T; Mansuy D; Boucher JL; Li Y
    Chem Commun (Camb); 2011 Apr; 47(16):4805-7. PubMed ID: 21412549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-terminating, oxidative radical cyclizations.
    Dreessen T; Jargstorff C; Lietzau L; Plath C; Stademann A; Wille U
    Molecules; 2004 May; 9(6):480-97. PubMed ID: 18007448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity effects on the enantioselectivity of chiral amido[4]resorcinarene stereoisomers.
    Botta B; Subissati D; Tafi A; Delle Monache G; Filippi A; Speranza M
    Angew Chem Int Ed Engl; 2004 Sep; 43(36):4767-70. PubMed ID: 15366081
    [No Abstract]   [Full Text] [Related]  

  • 18. Thermal and photochemical racemization of chiral aromatic sulfoxides via the intermediacy of sulfoxide radical cations.
    Aurisicchio C; Baciocchi E; Gerini MF; Lanzalunga O
    Org Lett; 2007 May; 9(10):1939-42. PubMed ID: 17439134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear and nonlinear optical response of aromatic amino acids: a time-dependent density functional investigation.
    Guthmuller J; Simon D
    J Phys Chem A; 2006 Aug; 110(32):9967-73. PubMed ID: 16898701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiroiminodihydantoin is the major product of the 8-oxo-7,8-dihydroguanosine reaction with peroxynitrite in the presence of thiols and guanosine photooxidation by methylene blue.
    Niles JC; Wishnok JS; Tannenbaum SR
    Org Lett; 2001 Apr; 3(7):963-6. PubMed ID: 11277770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.