These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 18438605)
21. Linkage-specific ubiquitin chain formation depends on a lysine hydrocarbon ruler. Liwocha J; Krist DT; van der Heden van Noort GJ; Hansen FM; Truong VH; Karayel O; Purser N; Houston D; Burton N; Bostock MJ; Sattler M; Mann M; Harrison JS; Kleiger G; Ovaa H; Schulman BA Nat Chem Biol; 2021 Mar; 17(3):272-279. PubMed ID: 33288957 [TBL] [Abstract][Full Text] [Related]
22. Interpreting the Language of Polyubiquitin with Linkage-Specific Antibodies and Mass Spectrometry. Matsumoto ML; Castellanos ER; Zeng YJ; Kirkpatrick DS Methods Mol Biol; 2018; 1844():385-400. PubMed ID: 30242722 [TBL] [Abstract][Full Text] [Related]
23. Mechanism of Lysine 48 Selectivity during Polyubiquitin Chain Formation by the Ube2R1/2 Ubiquitin-Conjugating Enzyme. Hill S; Harrison JS; Lewis SM; Kuhlman B; Kleiger G Mol Cell Biol; 2016 Jun; 36(11):1720-32. PubMed ID: 27044868 [TBL] [Abstract][Full Text] [Related]
24. Breaking the K48-chain: linking ubiquitin beyond protein degradation. Rahman S; Wolberger C Nat Struct Mol Biol; 2024 Feb; 31(2):216-218. PubMed ID: 38366227 [TBL] [Abstract][Full Text] [Related]
27. K63 polyubiquitination is a new modulator of the oxidative stress response. Silva GM; Finley D; Vogel C Nat Struct Mol Biol; 2015 Feb; 22(2):116-23. PubMed ID: 25622294 [TBL] [Abstract][Full Text] [Related]
28. Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome. Reichard EL; Chirico GG; Dewey WJ; Nassif ND; Bard KE; Millas NE; Kraut DA J Biol Chem; 2016 Aug; 291(35):18547-61. PubMed ID: 27405762 [TBL] [Abstract][Full Text] [Related]
29. Using linkage-specific monoclonal antibodies to analyze cellular ubiquitylation. Newton K; Matsumoto ML; Ferrando RE; Wickliffe KE; Rape M; Kelley RF; Dixit VM Methods Mol Biol; 2012; 832():185-96. PubMed ID: 22350886 [TBL] [Abstract][Full Text] [Related]
30. Mapping the interactions between Lys48 and Lys63-linked di-ubiquitins and a ubiquitin-interacting motif of S5a. Haririnia A; D'Onofrio M; Fushman D J Mol Biol; 2007 May; 368(3):753-66. PubMed ID: 17368669 [TBL] [Abstract][Full Text] [Related]
31. Efficient internalization of MHC I requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains. Boname JM; Thomas M; Stagg HR; Xu P; Peng J; Lehner PJ Traffic; 2010 Feb; 11(2):210-20. PubMed ID: 19948006 [TBL] [Abstract][Full Text] [Related]
32. The Ubiquitin Interacting Motif-Like Domain of Met4 Selectively Binds K48 Polyubiquitin Chains. Villamil M; Xiao W; Yu C; Huang L; Xu P; Kaiser P Mol Cell Proteomics; 2022 Jan; 21(1):100175. PubMed ID: 34763062 [TBL] [Abstract][Full Text] [Related]
33. Formation of ubiquitin dimers via azide-alkyne click reaction. Eger S; Scheffner M; Marx A; Rubini M Methods Mol Biol; 2012; 832():589-96. PubMed ID: 22350914 [TBL] [Abstract][Full Text] [Related]
34. Advanced Cataloging of Lysine-63 Polyubiquitin Networks by Genomic, Interactome, and Sensor-Based Proteomic Analyses. Romero-Barrios N; Monachello D; Dolde U; Wong A; San Clemente H; Cayrel A; Johnson A; Lurin C; Vert G Plant Cell; 2020 Jan; 32(1):123-138. PubMed ID: 31712406 [TBL] [Abstract][Full Text] [Related]
35. Diverse polyubiquitin chains accumulate following 26S proteasomal dysfunction in mammalian neurones. Bedford L; Layfield R; Mayer RJ; Peng J; Xu P Neurosci Lett; 2011 Mar; 491(1):44-7. PubMed ID: 21215295 [TBL] [Abstract][Full Text] [Related]