These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18438869)

  • 1. Solvent-impregnated resins as an in situ product recovery tool for phenol recovery from Pseudomonas putida S12TPL fermentations.
    van den Berg C; Wierckx N; Vente J; Bussmann P; de Bont J; van der Wielen L
    Biotechnol Bioeng; 2008 Jun; 100(3):466-72. PubMed ID: 18438869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.
    Blank LM; Ionidis G; Ebert BE; Bühler B; Schmid A
    FEBS J; 2008 Oct; 275(20):5173-90. PubMed ID: 18803670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of xenobiotics in a partitioning bioreactor in which the partitioning phase is a polymer.
    Amsden BG; Bochanysz J; Daugulis AJ
    Biotechnol Bioeng; 2003 Nov; 84(4):399-405. PubMed ID: 14574696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ product recovery of n-butanol using polymeric resins.
    Nielsen DR; Prather KJ
    Biotechnol Bioeng; 2009 Feb; 102(3):811-21. PubMed ID: 18831001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics.
    Wierckx N; Ruijssenaars HJ; de Winde JH; Schmid A; Blank LM
    J Biotechnol; 2009 Aug; 143(2):124-9. PubMed ID: 19560494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins.
    Caetano M; Valderrama C; Farran A; Cortina JL
    J Colloid Interface Sci; 2009 Oct; 338(2):402-9. PubMed ID: 19679317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanded application of a two-phase partitioning bioreactor through strain development and new feeding strategies.
    Vrionis HA; Kropinski AM; Daugulis AJ
    Biotechnol Prog; 2002; 18(3):458-64. PubMed ID: 12052059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review.
    Lin SH; Juang RS
    J Environ Manage; 2009 Mar; 90(3):1336-49. PubMed ID: 18995949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose.
    Wierckx NJ; Ballerstedt H; de Bont JA; Wery J
    Appl Environ Microbiol; 2005 Dec; 71(12):8221-7. PubMed ID: 16332806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorimetric investigations into the starvation response of Pseudomonas putida growing on phenol and glucose.
    Lissner A; Hüttl R; Frank N; Mertens FO
    J Appl Microbiol; 2009 Dec; 107(6):1984-90. PubMed ID: 19583802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of phenol on the biodegradation of pyridine by freely suspended and immobilized Pseudomonas putida MK1.
    Kim MK; Singleton I; Yin CR; Quan ZX; Lee M; Lee ST
    Lett Appl Microbiol; 2006 May; 42(5):495-500. PubMed ID: 16620209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of a two-phase partitioning bioreactor system by modification of the microbial catalyst: demonstration of concept.
    Vrionis HA; Kropinski AM; Daugulis AJ
    Biotechnol Bioeng; 2002 Sep; 79(6):587-94. PubMed ID: 12209805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreactor.
    Baumann MD; Daugulis AJ; Jessop PG
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):131-7. PubMed ID: 15549289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of di-2-pyridyl ketone salicyloylhydrazone on Amberlite XAD-2 and XAD-7 resins: characteristics and isotherms.
    Freitas PA; Iha K; Felinto MC; Suárez-Iha ME
    J Colloid Interface Sci; 2008 Jul; 323(1):1-5. PubMed ID: 18466914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption.
    Qureshi N; Hughes S; Maddox IS; Cotta MA
    Bioprocess Biosyst Eng; 2005 Jul; 27(4):215-22. PubMed ID: 15744503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenol degradation in a hybrid membrane system.
    Li Y; Wang C
    Bull Environ Contam Toxicol; 2005 Oct; 75(4):783-8. PubMed ID: 16400561
    [No Abstract]   [Full Text] [Related]  

  • 18. A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical.
    Wery J; Mendes da Silva DI; de Bont JA
    Appl Microbiol Biotechnol; 2000 Aug; 54(2):180-5. PubMed ID: 10968630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation.
    Verhoef S; Wierckx N; Westerhof RG; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2009 Feb; 75(4):931-6. PubMed ID: 19060171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations.
    Neumann G; Kabelitz N; Zehnsdorf A; Miltner A; Lippold H; Meyer D; Schmid A; Heipieper HJ
    Appl Environ Microbiol; 2005 Nov; 71(11):6606-12. PubMed ID: 16269688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.