These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18439260)

  • 1. Phenotype prediction in regulated metabolic networks.
    Kaleta C; Centler F; di Fenizio PS; Dittrich P
    BMC Syst Biol; 2008 Apr; 2():37. PubMed ID: 18439260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical organization of fluxes in Escherichia coli metabolic network: using flux coupling analysis for understanding the physiological properties of metabolic genes.
    Hosseini Z; Marashi SA
    Gene; 2015 May; 561(2):199-208. PubMed ID: 25688882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli.
    Chang RL; Andrews K; Kim D; Li Z; Godzik A; Palsson BO
    Science; 2013 Jun; 340(6137):1220-3. PubMed ID: 23744946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks.
    Hoppe A; Hoffmann S; Holzhütter HG
    BMC Syst Biol; 2007 Jun; 1():23. PubMed ID: 17543097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A metabolite-centric view on flux distributions in genome-scale metabolic models.
    Riemer SA; Rex R; Schomburg D
    BMC Syst Biol; 2013 Apr; 7():33. PubMed ID: 23587327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
    Adadi R; Volkmer B; Milo R; Heinemann M; Shlomi T
    PLoS Comput Biol; 2012; 8(7):e1002575. PubMed ID: 22792053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering functional gene expression patterns in the metabolic network of Escherichia coli with wavelets transforms.
    König R; Schramm G; Oswald M; Seitz H; Sager S; Zapatka M; Reinelt G; Eils R
    BMC Bioinformatics; 2006 Mar; 7():119. PubMed ID: 16524469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis.
    Chandrasekaran S; Price ND
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17845-50. PubMed ID: 20876091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli.
    Covert MW; Xiao N; Chen TJ; Karr JR
    Bioinformatics; 2008 Sep; 24(18):2044-50. PubMed ID: 18621757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elementary network reconstruction: a framework for the analysis of regulatory networks in biological systems.
    Dharmadi Y; Gonzalez R
    J Theor Biol; 2010 Apr; 263(4):499-509. PubMed ID: 20004670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns.
    Kaleta C; de Figueiredo LF; Schuster S
    Genome Res; 2009 Oct; 19(10):1872-83. PubMed ID: 19541909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli.
    Gutierrez-Ríos RM; Freyre-Gonzalez JA; Resendis O; Collado-Vides J; Saier M; Gosset G
    BMC Microbiol; 2007 Jun; 7():53. PubMed ID: 17559662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.
    Tabe-Bordbar S; Marashi SA
    Biotechnol Lett; 2013 Dec; 35(12):2039-44. PubMed ID: 24078125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A system-wide network reconstruction of gene regulation and metabolism in Escherichia coli.
    Grimbs A; Klosik DF; Bornholdt S; Hütt MT
    PLoS Comput Biol; 2019 May; 15(5):e1006962. PubMed ID: 31050661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A discrete mathematical model applied to genetic regulation and metabolic networks.
    Asenjo AJ; Ramirez P; Rapaport I; Aracena J; Goles E; Andrews BA
    J Microbiol Biotechnol; 2007 Mar; 17(3):496-510. PubMed ID: 18050955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph.
    Ma HW; Zhao XM; Yuan YJ; Zeng AP
    Bioinformatics; 2004 Aug; 20(12):1870-6. PubMed ID: 15037506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome-guided parsimonious flux analysis improves predictions with metabolic networks in complex environments.
    Jenior ML; Moutinho TJ; Dougherty BV; Papin JA
    PLoS Comput Biol; 2020 Apr; 16(4):e1007099. PubMed ID: 32298268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting the Significant Flux Backbone of Escherichia coli metabolism.
    Güell O; Sagués F; Serrano MÁ
    FEBS Lett; 2017 May; 591(10):1437-1451. PubMed ID: 28391640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low degree metabolites explain essential reactions and enhance modularity in biological networks.
    Samal A; Singh S; Giri V; Krishna S; Raghuram N; Jain S
    BMC Bioinformatics; 2006 Mar; 7():118. PubMed ID: 16524470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism.
    Nakahigashi K; Toya Y; Ishii N; Soga T; Hasegawa M; Watanabe H; Takai Y; Honma M; Mori H; Tomita M
    Mol Syst Biol; 2009; 5():306. PubMed ID: 19756045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.