These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

818 related articles for article (PubMed ID: 18440136)

  • 81. Preparation and characterization of N-S-codoped TiO(2) photocatalyst and its photocatalytic activity.
    Wei F; Ni L; Cui P
    J Hazard Mater; 2008 Aug; 156(1-3):135-40. PubMed ID: 18206303
    [TBL] [Abstract][Full Text] [Related]  

  • 82. High photocatalytic degradation activity of the polyvinyl chloride (PVC)-vitamin C (VC)-TiO2 nano-composite film.
    Yang C; Gong C; Peng T; Deng K; Zan L
    J Hazard Mater; 2010 Jun; 178(1-3):152-6. PubMed ID: 20138426
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Liquid-phase non-thermal plasma-prepared N-doped TiO(2) for azo dye degradation with the catalyst separation system by ceramic membranes.
    Cheng HH; Chen SS; Cheng YW; Tseng WL; Wang YH
    Water Sci Technol; 2010; 62(5):1060-6. PubMed ID: 20818046
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance.
    Li Q; Shang JK
    Environ Sci Technol; 2010 May; 44(9):3493-9. PubMed ID: 20387812
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO(2) under UV and visible-light irradiation.
    Wang S; Zhou S
    J Hazard Mater; 2011 Jan; 185(1):77-85. PubMed ID: 20934250
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Synthesis of [60]fullerene-ZnO nanocomposite under electric furnace and photocatalytic degradation of organic dyes.
    Hong SK; Lee JH; Ko WB
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6049-56. PubMed ID: 22121656
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Ag2S-ZnO--an efficient photocatalyst for the mineralization of Acid Black 1 with UV light.
    Subash B; Krishnakumar B; Swaminathan M; Shanthi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():314-9. PubMed ID: 23318775
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Photodecomposition of dyes on Fe-C-TiO(2) photocatalysts under UV radiation supported by photo-Fenton process.
    Tryba B; Piszcz M; Grzmil B; Pattek-Janczyk A; Morawski AW
    J Hazard Mater; 2009 Feb; 162(1):111-9. PubMed ID: 18572310
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells.
    Martinson AB; McGarrah JE; Parpia MO; Hupp JT
    Phys Chem Chem Phys; 2006 Oct; 8(40):4655-9. PubMed ID: 17047762
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays.
    Kafi AK; Wu G; Chen A
    Biosens Bioelectron; 2008 Dec; 24(4):566-71. PubMed ID: 18640021
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Photocatalytic degradation of Acid Red 88 using Au-TiO(2) nanoparticles in aqueous solutions.
    Sathish Kumar PS; Sivakumar R; Anandan S; Madhavan J; Maruthamuthu P; Ashokkumar M
    Water Res; 2008 Dec; 42(19):4878-84. PubMed ID: 18945469
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Studies on TiO(2)/ZnO photocatalysed degradation of lignin.
    Kansal SK; Singh M; Sud D
    J Hazard Mater; 2008 May; 153(1-2):412-7. PubMed ID: 17936502
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A highly sensitive H2O2 sensor based on zinc oxide nanorod arrays film sensing interface.
    Wang J; Xu M; Zhao R; Chen G
    Analyst; 2010 Aug; 135(8):1992-6. PubMed ID: 20517574
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Morphology-controlled fabrication of polygonal ZnO nanobowls templated from spherical polymeric nanowell arrays.
    Wang Y; Zhang J; Chen X; Li X; Sun Z; Zhang K; Wang D; Yang B
    J Colloid Interface Sci; 2008 Jun; 322(1):327-32. PubMed ID: 18359034
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli.
    Joo J; Kwon SG; Yu T; Cho M; Lee J; Yoon J; Hyeon T
    J Phys Chem B; 2005 Aug; 109(32):15297-302. PubMed ID: 16852938
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Photocatalytic degradation of monocrotophos pesticide--an endocrine disruptor by magnesium doped titania.
    Avasarala BK; Tirukkovalluri SR; Bojja S
    J Hazard Mater; 2011 Feb; 186(2-3):1234-40. PubMed ID: 21177020
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO(2) nanotube films.
    Liang HC; Li XZ; Yang YH; Sze KH
    Chemosphere; 2008 Oct; 73(5):805-12. PubMed ID: 18640697
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO(2) nanotube arrays.
    Liu M; Zhao G; Tang Y; Yu Z; Lei Y; Li M; Zhang Y; Li D
    Environ Sci Technol; 2010 Jun; 44(11):4241-6. PubMed ID: 20441178
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Photocatalytic activity of TiO2/SiO2 systems.
    Bellardita M; Addamo M; Di Paola A; Marcì G; Palmisano L; Cassar L; Borsa M
    J Hazard Mater; 2010 Feb; 174(1-3):707-13. PubMed ID: 19828242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.